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          Nanomaterials are commonly considered as those materials in which the shape and molecular composition at a

nanometer scale can be controlled. Subsequently, they present extraordinary properties that are being useful for the

development of new and improved applications in many fields, including medicine. In dentistry, several research efforts

are being conducted, especially during the last decade, for the improvement of the properties of materials used in

dentistry.
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1. Zeolites

       Due to the fact that it is possible to control the pore or pore diameter of zeolite-based materials, and also the active

sites and adsorption properties, they have been extensively used as adsorbents and as catalysts at the industrial scale 

, and subsequently their properties have been properly described. In recent decades, synthesis methods of zeolite

nanomaterials have been described , including stable colloidal suspensions , zeolite nanocrystals , zeolite nano and

microfibers , and zeolite thin films and membranes . Due to all this research effort, it has been possible to prepare

materials in which the pore diameter and surface adsorption properties, as well as the material nano-shape, can be

modulated. These materials found several applications in biotechnology and medicine, such as controlled drug and gene

release, the separation of biomolecules and cells, the improvement of the nutrition status and immunity of farm animals,

biosensor applications, and the detection of biomarkers of various diseases, radical scavenging, and tissue engineering

and biomaterial coating . In dentistry, zeolite materials have mainly been investigated for their uses in obturation,

endodontics, and prostheses, although the number of papers on zeolites in dentistry is quite low (Figure 1), indicative that

this is still a field to be developed.

       Okulus and coworkers  described the use of LTA-type (Linde type A) zeolite fillers for resin-based dental materials

with remineralizing potential. LTA-type zeolite was used due to its ability to incorporate Ca  cations, which are considered

to have anticaries activity, since there are able to rebuilt the HA (hydroxyapatite), Ca (PO ) (OH) , structure . Some

studies had already described the use of zeolite–HA composites as promising bone tissue engineering applications

  due to their biocompatibility, stability, and activity in the proliferation of the normal human osteoblasts. In the cited

study , several parameters were evaluated for the synthesis of LTA zeolites. Then, these materials were subjected to an

ion exchange process with CaCl . These materials were incorporated to an organic matrix to form ionomers. Although the

Ca  release capability is lower for the composites when they are compared with the Ca–zeolite materials, it was

comparable to the cation release that showed other materials, such as calcium phosphate-filled and glass ionomer

cements. Thus, this study  confirmed that this is a promising application in dentistry for zeolite-based materials, although

more research efforts are necessary to improve the Ca  release properties of the zeolite-containing composites. Kim and

coworkers   described a similar approach, although not with Ca . They used the zeolite material as carrier for

chlorhexidine, which was incorporated into commercial dental glass ionomer cement. This way, the antimicrobial

properties of the cement were improved.

       Although those few examples described in the previous paragraph contemplated the use of zeolites as carriers for

Ca  cations and chlorhexidine, in most cases, the use of zeolites in materials for fillings and endodontics is a support for

Ag nanoparticles. The antimicrobial effects of metallic silver and its salts are well known , and many recent studies 

have focused on the use of Ag nanoparticles. Depending on the application, some authors relate the microbial effect to

the shape of those nanoparticles , and some to the microbial activity of Ag   cations . The use of silver

nanoparticles is quite promising in several medical applications, including dentistry , since several pathogenic bacteria

have developed resistance against various antibiotics, and in addition, nanomaterials are allowing the development of

silver-based dressings, coatings, and silver-coated medicinal devices such as nanogels and nanolotions . Sinanen

Zeomic, commercialized in 1984 as Zeomic , is a zeolite material doped with silver, and according to the commercial

specifications, able to release Ag  cations. This antimicrobial commercial agent has been used in some research studies
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in dentistry. For example, Nakanoda and coworkers   evaluated its antifungal effect against acid production (and/or

Candida albicans growth), by combining commercial Zeomic  with a tissue conditioner. Their results with a 4–5% Zeomic

loading showed a significantly greater effect on the pH value decrease when compared with the unloaded samples,

suggesting that these materials can have some applications in denture stomatitis. Several studies  also show that

zeolite loaded with Ag   cations is a good additive to Mineral Trioxide Aggregate (MTA) since it is able to confer it with an

antimicrobial effect, finding a correlation between the amount of Ag+ cations released and the bacteria/fungi growth

inhibition. MTA is a cement widely used in endodontics , since it is biocompatible, insoluble in tissue fluids, and able to

seal the pathways between the root canal system and its surrounding tissues. All these examples show that Ag-loaded-

zeolite materials are very useful as an additive for filling materials and cements and in addition to their antimicrobial

activity, it has been reported that the incorporation of the zeolite does not affect certain tissue conditioner’s dynamic

viscoelastic properties  and that the antimicrobial effect is not influenced by saliva for at least one month . It has also

been reported that MTA doped with Ag/zeolite, presents a higher antimicrobial activity than an MTA treated with

chlorhexidine . In addition to Ag, it has been reported that Cu and Zn salts and nanoparticles  are also active to fight

the growth of bacteria, alone or in combination with silver. In this sense, Samiei and coworkers  used a conventional

ZSM5 type zeolite, loaded (following an ion exchange procedure) with Ag  and Zn  cations. Although the antimicrobial

effect that they conferred to the MTA cement was desirable, they reported a decrease in the compressive strength of the

material, limiting its applications.

       A common problem regarding dental resins is that they have a water sorption capacity that can reach 2.5–3% .

This sorption capability, along with their heterogeneous surface after polymerization, makes them vulnerable to surface

fouling by microbiotes such as Candida, which can form a biofilm on the resin surface . To solve this, Tosheva et al.

 proposed the introduction of Ag/zeolite in dental acrylic resins. They prepared a conventional faujasite zeolite, followed

by an ion exchange procedure for Ag  introduction. The impregnation of this Ag/zeolite material into the resin was made

by incubation at room temperature for 24 h under continuous stirring. In their study, it was demonstrated that the

antimicrobial activity was correlated with the Ag   release capability, and that such activity was lost after 60 days of

incubation in aqueous media. These results are in line with those reported by Saravanan et al. , which evaluated in vivo

the antimicrobial effects and viscoelastic properties of Ag/zeolite-doped dental acrylic resins. However, it was reported by

Tosheva et al.   that the introduction of Ag/zeolite to the resin did not affect the appearance of the material and the

mechanical properties were within the standard requirements, although other authors have reported a decrease in the

flexural and impact strength values of the acrylic resins after Ag/zeolite doping . 

       There are also some studies that have explored the incorporation of zeolite into titanium alloys, which are widely used

in dental and orthopedic implants. Despite their biocompatibility and corrosion resistance, Ti alloys can release some V

and Al ions, as has been reported from some in vitro studies , causing poor osseointegration and limiting the lifespan of

the Ti prosthesis. To avoid such Al and V ion release, a zeolite coating deposited on the Ti alloy has been proposed . In

this manner, the dissolution of the alloy metals is prevented and the modulus mismatch with bone issue is reduced,

enhancing the osseointegration. Thus, this study showed that zeolite coatings are promising for hard tissue regeneration

applications. In line with this study, more recent papers  also demonstrated that the use of zeolites can improve the

osseointegration of Ti alloys. Other authors have proposed a similar procedure but with a Zn-containing coating, by the

use of a ZIF (zeolitic imidazolate framework) material. This way, and in addition to the osseointegration capability

described for the zeolite coatings , the release of Zn  cations confer to the Ti alloy antimicrobial capability .

       It has been shown that zeolites found many important applications in dentistry, as is summarized in Table 1. Due to its

capacity to retain cations and molecules by ion exchange/impregnation and subsequent release, they have been

described several applications depending on the molecule/cation: Ca   (remineralizer), Ag   (antimicrobial), and

chlorhexidine (antimicrobial). In addition, zeolite coatings can improve the osseointegration capability of Ti alloys. These

studies show that zeolite materials are quite promising in dentistry, but the number of studies about applications of zeolite-

based materials in dentistry, in comparison with other fields in biotechnology and medicine, is low. Thus, this is indicative

that this field of research must be developed in the incoming years.

Table 1. Main applications of zeolite-based materials in dentistry.

  Material Main Function References

Ca/zeolite resins remineralize

Chlorhexidine/zeolite cement antimicrobial

Ag/zeolite
cement antimicrobial

acrylic resins antimicrobial
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  Material Main Function References

Zeolite coating Ti alloys osseointegration

2. Graphene

       Graphene consists in a single layer of carbon atoms with a hexagonal honeycomb lattice that was isolated for the first

time in 2004 by Geim and Novoselov at The University of Manchester. Such structure makes graphene the thinnest

known material, and also confers it some extraordinary properties such as a very high mechanical strength, electricity and

heat conduction, having no effective mass . Since its discovery in 2004, this innovative and revolutionary material has

opened many lines of research and is revolutionizing areas such as precise sensors, solar panels, faster electronics,

coatings, paints, and of course medicine. In addition to graphene, 2D analogues have been described, also with an

ultrathin-sheet structure, but with another chemical composition such as graphitic carbon nitride, transition metal oxides

and dichalcogenides, or boron nitride . Graphene-based materials and their analogues have been demonstrated to find

important applications in nanomedicine and nanobiotechnology, such as gene transportation, anticancer drug release,

photothermal and photodynamic therapies, biosensors and tissue engineering , most of them being evidently quite

relevant in dentistry. When graphene is rolled up, a carbon nanotube is obtained, thus carbon nanotubes and graphene-

based materials have some similarities, but in order to analyze the applications in a systematic way and for the sake of

simplicity, applications with graphene materials will be discussed in the present section whereas carbon nanotubes will be

analyzed in detail in the next section, with some other kind of nanotubes and nanofibers.

       One of the most explored applications of graphene-based materials in dentistry is for tissue engineering  and pulp-

denting regeneration , as a smart reinforcing scaffold material . The most common available procedures for

bone regeneration (allograft, isograft, autograft and xenograft) have many potential risks, notably in developing adequate

bone regeneration therapies. This is due to the properties of graphene family materials that make them suitable for the

structural reinforcement of hydrogels, films and other scaffold materials that are commonly used for tissue engineering .

Graphene-based materials have been demonstrated to increase the strength, elasticity and mechanical properties when

they are added to the most common materials used for tissue engineering, such as hydrogel composites made of

synthetic hydrophilic polymers including polyvinyl alcohol and poly (methyl methacrylate), or chitosan gels. In addition, it

has also been proved the improvement of the osteogenic potential of graphene-coated surfaces. This is a very interesting

application of graphene-based materials, since hydrogels have very weak mechanical properties that limit their use in

many tissue engineering applications . In addition to its mechanical and electrical properties, graphene functionalization

with protein/peptides will be useful for tissue engineering applications . For example, Kawamoto and coworkers

 prepared graphene oxide scaffolds (GO). They demonstrated that they presented a quite low cytotoxicity and that they

were able to enhance the cellular ingrowth behavior. They also demonstrated that this material was able to increase the

periodontal attachment formation, cementum-like and ligament-like tissue, in comparison with the scaffold that was not

doped with graphene oxide. These applications of graphene and its derivatives in dentistry are quite relevant, especially

for implants, membranes, and cements, in addition to other applications that have been explored, such as teeth whitening,

bacteria treatment, and biosensors. Another example can be found in the study reported by H. S. Jung and coworkers ,

who prepared a Ti alloy with osteogenic dexamethasone that was loaded in a graphene material. Such material resulted in

a significant increase in the differentiation of the growth of osteoblasts.

        Titanium is the most common material to be used in implantology, mainly due to its biocompatibility. However, this

material presents some disadvantages, since it has been detected that it can generate alloy particles and ions into

surrounding tissues, which result in bone loss and the osseointegration failure of the implant . Therefore, Ti materials

are the best option nowadays, but they still need to be improved. Graphene oxide (GO) is the material that has been more

explored in this field. It is composed by the exfoliated monolayers of a few-layered stacks of graphite oxide. These layers

are approximately 1 nm thick and 400–500 mm long, having a very high aspect ratio . Several groups have

investigated the GO coating of Ti implants in order to improve the osseointegration since it is biocompatible, has

antibacterial properties  and can enhance the mechanical properties . In addition, GO coatings prevent corrosion .

Nishida et al.  reported the fabrication of a GO-applied scaffold and showed through in vivo studies that such scaffolds

were able to enhance new bone formation. Mohammadrezaei and coworkers performed a systematic literature review to

uncover the parameters’ effect on bone regeneration   in order to establish some parameters that improve

osseointegration in a safer way. They concluded that a mass ratio ≤1.5 wt% for all and a GO concentration up to 50 μg/mL

can be considered safe for most cell types, although the maximum concentration depends on the cell type. In this line, Gu

et al.  grew single layer graphene sheets on Ti by chemical vapor deposition (CVD) and evaluated the effect of thermal

treatment (2 h at 160 °C) after the CVD in order to increase the adhesion strength and osteoinductive activity. They

demonstrated that thermal treatment enhanced adhesion and did not affect the favorable effects such as osteogenic
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differentiation and antibacterial activity. Suo and coworkers prepared a GO/chitosan/hydroxyapatite (HA) composite

coating that was deposited on the Ti material by electrophoretic deposition . The objective of the cited paper was to

improve the properties of HA coatings since, although they have been demonstrated to improve the osseointegration

between the implant and the bone , it possesses a quite low mechanical strength that limits its use. The addition of

chitosan can improve the coating adhesion on the Ti surface of the HA coating and facilitates the osseointegration. It was

demonstrated  that cell viability, cell differentiation and cell mineralization were significantly enhanced with respect to

the reference coatings (those that did not include HA, chitosan and GO). In addition, the biomechanical properties of the

new bone formed in vivo around the GO/chitosan/HA implant were also enhanced, as was demonstrated through the

animal study. Another approach that used tea polyphenol-reduced oxide (TPG) instead of GO was reported by Liu and

coworkers . They deposited a TPG layer on the Ti material by electrochemical deposition. The in vivo results reported

proved that the TPG layer was able to improve the osseointegration.

       Another important issue when adding graphene to Ti implants is the antibacterial activity that graphene confers 

. Several studies can be found elsewhere showing that GO incorporation into resins and membranes prevents the

microbial adhesion   of several common mouth microbes . This effect is related to the physical damages in

bacterial membranes that graphene can cause with its sharp edges and the destructive extraction of lipid molecules 

. It can also be improved by the functionalization of the graphene layer with other antimicrobial agents, such as silver

nanoparticles . The functionalization can be used, in addition to the antibacterial applications, for the delivery of

many drugs. For example, La and coworkers   demonstrated that GO can be an efficient carrier to deliver proteins,

another application in implantology. They coated Ti material by a layer-by-layer assembly of positively and negatively

charged GO sheets (GO–NH  and GO–COO– respectively). They loaded a therapeutic protein (bone morphogenetic

protein 2) on the Go–Ti material and demonstrated, through in vitro human bone marrow-derived mesenchymal stem cells

tests, that the osteogenic differentiation was higher when the cells are cultured on Ti–GO instead of Ti, showing how GO

on Ti is an effective carrier for the controlled delivery of therapeutic proteins. 

           Graphene coatings are also able to enhance the proliferation of dental pulp steam cells . Rosa et al.

 evaluated the cytocompatibility and differentiation potential of dental pulp stem cells on GO substrates and concluded

that cells are able to attach satisfactorily to the substrate, as well as their proliferation. They also showed that GO

increased the expression of some genes involved in the upregulation of mineral-producing cells. Rodriguez-Lozano

  and coworkers proposed composite films of GO and silk fibroin to improve the cell proliferation and viability. One

application was described by Di Carlo and coworkers , whom prepared GO-coated membranes (Lamina ), and the in

vitro analysis demonstrated that the GO coating favored the proliferation of stem cells and promoted the adhesion. Xie et

al.  demonstrated that graphene induced a high level of mineralization as compared to glass, as was evaluated through

pulp stem cells cultures. They concluded that graphene was able to induce osteogenic and not the odontoblastic

differentiation of dental pulp stem cells.

          The addition of graphene to membranes in oral surgery is useful to prevent soft tissue cells from infiltrating the

growing bone . Several authors have investigated the effect of GO addition to collagen membranes, and culture

experiments showed that GO addition prevented any type of inflammatory response, and overall, favored the proliferation

of human gingival fibroblasts . In addition to membranes, it has also been investigated as an additive for resins and

cements. Traditional polymeric and composite materials have some disadvantages that could be overcome by the use of

graphene, such as bacterial adhesion and the formation of biofilms . Duvey and coworkers  studied the incorporation

of graphene sheets to calcium silicate cements, in order to improve some of the disadvantages that these materials have,

such as mechanical properties and long setting time. In the same line, Bacali et al.   studied the incorporation of

graphene into polymethyl methacrylate resins. In this case, they incorporated graphene sheets doped with Ag

nanoparticles in order to increase the antibacterial properties. They described how Ag–graphene sheets improved the

water absorption and mechanical properties of the resins. Bregnocchi and coworkers  reported the use of graphene as

fillers for polymer dental adhesives and reported the superior antibacterial activity of such materials with similar

mechanical properties (for a 0.2 wt% graphene concentration). In this case, they described 4% graphene as the ideal

concentration to reach such objectives. Graphene is also beneficial as the doping of alloys, as demonstrated by Rokaya et

al. , whom added Ag nanoparticles/GO layer to a NiTi alloy by electrophoretic deposition, in order to improve the

mechanical properties and antibacterial of the alloy. A similar study with glass ionomer cements was performed by Sun et

al. , which used fluorinated graphene with the objective of improving the antibacterial properties of the cement, and in

addition, conferred a fluoride ion-releasing property to this material. Nam and coworkers   also used fluorinated

graphene as a doping agent for orthodontic bonding resins, in order to prevent white spot lesions, due to the antibacterial

activity and remineralization effect that is conferred to the resin. Polymethyl methacrylate (PMMA) bone cements are also

very frequent in dentistry and medicine, and graphene is also a useful candidate to increase their resistance to

mechanical fatigue and impact. Paz et al.  studied whether the addition of graphene affected other important properties,
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such as the thermal ones (thermal conductivity, heat generation, as the extent of the polymerization reaction and glass

transition). They satisfactorily concluded that the addition of GO to PMMA cements did not significantly affected thermal

properties.

           Graphene in biomedicine can be used as an optical biosensing platform . In this sense, Li and coworkers

  described the interactions of graphene quantum dots with the dental pulp stem cells in order to use them as a

fluorescent labeling of stem cells. This would offer valuable information after the transplantation for evaluating the efficacy

of stem cell therapies. Son and coworkers   reported recently that a GO quantum dot coating can be an effective

treatment for dentin hypersensibility, due to its mineralization activity and capacity for dentinal tubule sealing. On the other

hand, it is well known that hydrogen peroxide (H O ) is commonly used for teeth whitening treatments since it is able to

penetrate the layers of the enamel, oxidizing some of the compounds that cause discoloration. The oxidation reaction

mechanism is catalyzed by the hydroxyl radicals (OH) that are produced when the peroxide is decomposed. Such

decomposition can be enhanced by ozone or UV-light, which is commonly used in the professional teeth whitening

treatments. The peroxide decomposition to form radicals can also be catalyzed with metal salts, something frequently

used in the oxidation-based processes for removing pollutants, such as the Fenton oxidation processes, in which Fe is

used , although other metals can also catalyze these oxidation processes . Following this idea, Su and

coworkers   described the use of a cobalt–tetraphenylporphyrin/reduced graphene oxide as a nanocomposite for

catalyzing the peroxide decomposition during teeth-whitening treatments.

       It has been shown that graphene-based materials, and mostly graphene oxide (GO), have many properties that made

them quite relevant as dopants for materials that are used commonly in dentistry, as is summarized in Figure 3.

Graphene-based materials confer a very high mechanical strength with no effective mass, in addition to antibacterial

activity, due to its sharp edges, that can be enhanced with a functionalization with Ag nanoparticles or other drugs. In

addition, the coating adhesion can be increased with the functionalization with chitosan, as well as the functionalization

with proteins enhances the properties of the graphene regarding the bone regeneration and osteogenic potential. Thus, all

these potential properties made graphene and its derivatives useful dopants and coating agents for Ti implants, alloys,

adhesives, composites, membranes, resins and cements.

Figure 3.  Main properties of the graphene-based materials that are relevant in dentistry (inside circle), and the main

properties that they confer to the materials that are commonly used in dentistry (outside circle).

3. Nanorods, Nanowires, and Nanotubes

       Nanorods, nanowires and nanotubes were cylindrical-shaped nanomaterials. Nanowires usually present a very high

length to width ratio with respect to nanotubes and nanorods. Nanorods and nanowires are usually synthesized from

semiconducting metals or oxides, whereas the term nanotube usually refers to those shapes that are empty (a tube), that

can be made from metals and frequently from carbon. Nanotubes can be made with a single wall or with multiple walls.

When they are made from carbon they are named as single-wall carbon nanotubes (SWCNT) or as multi-wall carbon

nanotubes (MWCNT) (Figure 1). In addition, nanofibers, that are fibers with diameters in the nanometer range, and that

can be considered between nanorods and nanowires, can be included in this family of nanomaterials. These materials

have found many applications in many fields, such as energy conversion and storage , catalysis   and

photocatalysis , biotechnology and medicine, for applications such as drug delivery, tissue engineering   and

cancer diagnosis .
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       As it has been discussed for graphene and its derivatives, carbon nanotubes have a very high mechanical strength

that made them quite advantageous for many applications in the synthesis of materials for dental applications. As with

graphene derivatives, one of the main applications of carbon nanotubes is tissue engineering, as scaffolds to provide a

suitable environment for the incorporation of cells, or for growing factors in order to regenerate damaged tissues . In

this sense, de Vasconcellos et al.  reported the synthesis of a biomaterial from MWCNT and hydroxyapatite, and its

application as a bone substitute to improve regeneration in interventions requiring mesenchymal stem cell differentiation

into osteoblast for healing. Terada et al.  prepared a MWCNT coating on titanium, reporting a good cell proliferation

and strong adhesion. Following this line, Nahorny and coworkers  prepared a MWCNT/GO material combined with

hydroxyapatite, which resulted as useful as a protective coating for present dentin erosion. With a similar approach, Meng

et al.   prepared a nydorxyapatite/MWCNT composite, reporting a very high mechanical strength and fracture

toughness. In another application, a SWCNT-based material proved to be useful for the differentiation of stem cells from

dental tissues (apical papilla . Wang et al.   reported a MWCNT-doped polycarbosilane composite, prepared by

spark plasma method, that had SiC nanoparticles. Such material presented good mechanical properties for bone tissue

and dental implants, and the authors proposed such a composite as a candidate dental implant material in the future. A

similar approach was adopted by Chew and coworkers  which reported the synthesis of a calcium phosphate cement

doped with MWCNTs for bone substitute applications. Carbon nanotubes can also be used to prepare smart coatings for

the surface of Ti implants. In this line, Mekhalif et al.  prepared a Ta O /MWCNT composite coating on the surface of

Ti implants by a sol–gel process. Ta O  was selected because it is biocompatible and quite resistant to corrosion. They

concluded that such a coating layer was able to improve the hydroxyapatite formation.

       Carbon nanotubes have also been proven to improve the mechanical strength of several materials commonly used in

dentistry, similarly to the aforementioned addition of GO. The effect is similar to the usage of steel to increase the

hardness of the common cement, forming concrete, due to the bonds formed between cement and steel and the effect

that steel scaffolds have in the final structure. Indeed, carbon nanotubes are actually also used for the reinforcement of

cementitious composites and concrete in civil engineering  and in general, in polymer composites with applications in

several fields. The main issue for this application is to achieve the homogeneous dispersion into the polymer matrix, which

can be overcome with solution mixing or melt blending . In dentistry, Marrs et al.  studied the addition of MWCNT

to a PMMA cement, and concluded that, as in the case of adding GO , and as expected, MWCNT materials were able

to increase their mechanical properties without affecting the thermal properties. In another work, Bottino et al.

encapsulated doxycycline in a nanotube-modified dentin adhesive , in order to propose a procedure for the synthesis

of therapeutic adhesives. Similar studies were performed with other materials commonly used in dentistry, such as resins,

composites and alloys . Thus, both graphene and carbon nanotubes are able to increase the mechanical

strength of alloys, resins, polymers and cements in dentistry.

       Thus, both carbon nanotubes and graphene present quite similar properties and applications, for instance, graphene

is just an unrolled nanotube. The main difference between both structures is the electronic structure. Graphene is a zero-

band-gap semiconductor due to its honeycomb structure whereas nanotubes can show either semiconducting or metallic

properties depending on the chirality. Both of them act as reinforced scaffolds and they can also be functionalized, both

properties very relevant in dentistry with several applications having been explored, as mentioned, although that, some

differences are evident between both of them. Due to the shape of both structures, it has a higher number of reactive

edge surface sites in the graphene and due to that, several applications in dentistry, and specially in implantology, use the

antibacterial properties of graphene without loading with any antibiotic or metal nanoparticles, as shown . The

higher bioactivity of graphene with respect to nanotubes was also demonstrated through in vitro photothermal anticancer

studies . However, the carbon nanotubes edge sites have some reactivity   and some studies have also found

some microbial activity in nanotubes . These differences in the reactivity, number and position of active sites are

relevant to the functionalization, and the use of any of them shall be considered depending on the application. In a

preliminary approach, since graphene usually has more edges than nanotubes, it is easily functionalized. With respect to

their use as fillers in polymer and composites, it has been shown that after a limit of loading, there is a decrease in the

electrical and mechanical properties due to the agglomeration of the filler (graphene or carbon nanotubes). In this case,

the shape of graphene improves these properties, since it can form an intricate conducting network within the polymer

host matrix .

       In addition to carbons, nanotubes can also be prepared from materials such as Ti or a Ti alloy, which are widely used

in orthopedic and dental applications, and dental implants with surface TiO  nanotubes coated coverage are commercially

available. These Ti-based nanotubes increase the surface roughness of the implant , improving the

osseointegration , antibacterial properties  and in addition, can be functionalized in several ways , opening a

wide range of possibilities . For example, Balasundaram et al.   prepared TiO   nanotubes by electrochemical

anodization, and successfully immobilized a bone morphogenetic protein on them and examined the human osteoblast
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responses through an in vitro study. They reported the enhancement of osteoblast adhesion in comparison to the non-

functionalized nanotubes. In this sense, Kodama and coworkers reported that TiO  nanotubes can also be loaded with

hydroxyapatite , in order to increase the osseointegration. Cao et al.   immobilized peptide sequences on the

TiO  nanotubes in order to enhance the osteogenic gene expression, as demonstrated by in vitro tests. TiO  nanotubes

can also be functionalized with anti-inflammatory  or antibacterial agents , metal nanoparticles such as ZnO ,

Au , Ag , or prepared as an alloy with other metals such as Cu  in order to confer them antimicrobial activity. In

addition to implantology, where those studies have proven the advantages of using Ti-based nanotubes, there are not

many described applications of these materials for other applications, and just a few papers describe the use of

TiO  nanotubes as the reinforcement of dental materials. Khaled et al.  used TiO  nanotubes by incorporating them in

a cement matrix and reported an increase in the mechanical stress. On the other hand, dos Santos et al.  evaluated

through an in vitro study the incorporation of TiO  nanotubes into zirconia composite surfaces in order to evaluate the

effect in the bond strength, reporting that they did not have any beneficial effect.

       Similar to other nanomaterials, nano and microfiber are garnering attention since they have potential applications in

many fields, such as electronics, catalysis, and of course, dentistry and medicine. Several synthesis methods have been

described; among all, electrospinning is the preferred one, since it is non-expensive, simple, and relatively easy to scale

. In this technique, an electric field is applied to the end of a needle that contains the polymer solution held just by

the surface tension. When the intensity of the field is increased, the fluid at the tip of the needle starts to elongate, and

when it reaches a critical value, the surface tension forces and a jet of the solution is ejected from the tip, allowing the jet

during the process to become very long and thin, forming fibers or wires. Nanorods, that are shorter than fibers, can also

be prepared by electrospinning, although other methods such as hydrothermal can also be used. As well as nanotubes,

these fibers also can act as scaffolds for tissue engineering, controlled drug release and implants . The most

investigated application of nanofibers/nanorods in dentistry is with chitosan   and hydroxiapatite fibers, whose

synthesis by the electrospinning method has also been described , since both materials are well known for

their applications in epithelial and bone tissue regeneration, as mentioned. The advantage of the nanomaterial formulation

is that the osteogenic and cementogenic differentiation is enhanced due to the nano surface structure 

  as well as the stem cell differentiation regulation . Atai et al.   prepared hydroxyapatite nanorods by the

hydrothermal method and incorporated them into a dentin adhesive. They described that the nanorods were stable in the

solution and that they were well dispersed, avoiding particle aggregation, and reported a higher bioactivity in the nanorod-

doped adhesive. In addition to these, other synthesis methods, as by sol–gel , spray drying , microware-assisted

, sonochemical homogeneous precipitation , by a hard-template , polyvinylpyrrolidone (PVP)-assisted

hydrothermal method  have been described.

       An interesting application of hydroxyapatite nanorods was described by Clarkson et al. , who modified the surface

of the nanorods depositing a monolayer of surfactant in order to allow then to assemble into an prisme-like enamel

structure at the water/air interface, with the objective of mimicking the natural biomineralization process to create dental

tissue enamel. In addition, in this line of enamel applications, the same group  described the synthesis of fluorapatite

nanorods and nanowires, in order to incorporate them into dental materials for caries prevention treatments. More recent

works have also focused on the synthesis of hydroxyapatite nanomaterials for the remineralization of enamel 

 as well as in the preparation of fluoridated hydroxyapatite nanorods .

       Hydroxyapatite nanorods/fibers have been also described as efficient reinforcement materials for composite resins

and polymers , with the advantage of the high remineralization capability. Hydroxyapatite nanorods can present

also antimicrobial properties, for example, Chen and coworkers   loaded the nanorods with zinc particles, so the

material was able to load Zn  upon use, presenting a high activity inhibiting oral cavity bacteria. In the field of tissue

engineering, some applications have been explored, for example, Ren et al.   described polyvinyl alcohol collagen

hydroxyapatite, Zhu et al.  a CaP-hydroxyapatite, and Asran et al.  PVA–hydroxyapatite, in all cases nanofibers

composites, in both cases by electrospinning and also in both cases it demonstrated the potential of such fibrous

materials as bone tissue scaffolds. A similar approach with chitosan has also been described recently .

           All these works show the potential of hydroxyapatite nanostructures due to their attractive bioactivity and

biocompatibility, however, they are limited due to their low mechanical strength, although there are some ways to

overcome this issue. In this sense, Mangalaraj and coworkers   described that hydroxyapatite nanorods can be

reinforced with polyethylene, that could be useful when they are used as reinforcement materials as well as tissue

scaffolds. TiO –hydroxyapatite nanocomposites are also quite relevant in dentistry and it is a good option to combine the

properties of both materials , in this sense, several authors have described the synthesis of TiO  materials doped with

hydroxyapatite nanorods , demonstrating that the mineralization capacity is enhanced.
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          Carbon nanotubes and polymer nanofibers, due to their shape and their ultrasmall diameter, are ideal biosensors,

since they can penetrate skin and other tissues without causing harm or sensation to the patient. Due to that, several

applications, in many fields of medicine, have been described . One example can be found in the paper by Raoof

et al. , which used several nucleic acids as probes on MWCNT electrodes, for the in vivo electrochemical

determination of Hg  and Ag , in dental amalgam filling compositions. Cui and coworkers  described a similar DNA–

MWCNT electrode for the non-invasive detection of helicobacter pylori in dental plaque.

          An important aspect to be considered when graphene and nanotubes-based nanomaterials are used in dental

materials is biocompatibility, necessary to understand the relationships of these materials with living cells. Since

nanomaterials, as exposed, are becoming very popular in medicine, several studies have been performed in order to

evaluate this important aspect. In the case of nanomaterials, such as graphene and nanotubes, the biocompatibility

depends on several factors such as size, purity, shape and number of sharp edges, as it is difficult to assess the general

arguments . The studies focused on the toxicity of oral applications are limited . Olteanu et al.  performed a

study to evaluate the toxicity of graphene-based materials on human dental follicle stem cells. They found 40 ug/mL as a

threshold, for higher concentration, reported that the cells viability was reduced. They reported a good safety profile for

low concentrations (below 5 ug/mL). In another work, Jin and coworkers   proposed a functionalization with

polyethylene glycol or hydroxyapatite to improve the solubility and biocompability of MWCNTs for oral applications.
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