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Fruit set is the earliest phase of fruit growth and represents the onset of ovary growth after successful fertilization.
Environmental conditions can negatively affect fruit set and final productivity. In parthenocarpy, fruit formation is less
affected by environmental factors because it occurs in the absence of pollination and fertilization, making parthenocarpy a
highly desired agronomic trait. Elucidating the genetic program controlling parthenocarpy, and more generally fruit set,
may have important implications in agriculture, considering the need for crops to be adaptable to climate changes.
Several phytohormones play an important role in the transition from flower to fruit. Further complexity emerges from
functional analysis of floral homeotic genes. Some homeotic MADS-box genes are implicated in fruit growth and
development, displaying an expression pattern commonly observed for ovary growth repressors.
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| 1. Introduction

Tomato is one of the most important crops worldwide cultivated for the nutritional value of its fruit, which is a source of
health-promoting compounds such as vitamins, carotenoids, phenolic compounds, and small peptides . Furthermore,
tomato has been adopted as an experimental model for studying fleshy fruit growth, development, and ripening.
Botanically, the tomato fruit that originates from the ovary, the expanded basal portion of the pistil, is a berry composed of
pericarp derived from the ovary wall, the placenta, and the pulp containing seeds 2. Shortly before flower anthesis, the
growth of the unpollinated ovary is actively blocked by developmental repressors and cell division temporarily stops. The
control on ovary quiescence in tomato and Arabidopsis is exerted at least in part by negative factors derived from the
communication between the anthers and the ovary B4l After successful completion of pollination and ovule fertilization,
the coordinated action of growth signals acts in relieving the ovary growth repression B8], The switch from the static
condition of the unpollinated ovary to that of rapidly growing fruit after fertilization is called the fruit set phase, after which
fruit growth occurs by cell division and cell expansion, until reaching the ripening stage. Auxins, gibberellins (GAs),
cytokinins (CKs), abscisic acid (ABA), ethylene, and brassinosteroids (BRs) have been implicated in controlling different
stages of fruit growth Il with auxins and GAs being the crucial promoting hormones of fruit initiation AEIEIY MADS-
box transcription factors have also emerged as one of the players recruited for the regulation of fruit set L11[2](23],

Fruit set is a very critical phase because it is more sensitive to endogenous and exogenous signals than later stages of
growth 41 |nsufficient supply of nutrients, such as the phloem-imported sucrose, and adverse environmental conditions,
such as drought or excessive/low temperatures, may impair the reproductive process, leading to the abortion of either
flowers, seeds, or fruit with dramatic implications for fruit productivity 1451, The induction of parthenocarpy, which is the
formation of seedless fruit in the absence of pollination and fertilization [, could help prevent problems linked to low fruit
yield under unfavorable conditions L8l parthenocarpy is generally the consequence of precocious activation of
molecular events occurring normally upon pollination and fertilization. Some species or varieties (e.g., genetic mutants or
plants with altered ploidy) have a natural capacity to produce parthenocarpic fruit L4128l |n addition, parthenocarpy can be
artificially obtained by applying synthetic growth factors to unpollinated ovaries or by genetic engineering [,

| 2. Hormonal Regulation of Fruit Set
2.1. Auxins

Immediately after pollination and fertilization, auxin content (with indole-3-acetic acid—IAA—the major active auxin)
REtaren¢iEyn the ovary, activating the auxin signaling pathway that initiates fruit set. Auxin is perceived by its receptor,
the TRANSPORT INHIBITOR RESPONSE 1 (TIR1), which is the F-box protein component of the E3 ubiquitin ligase
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of the Aux/IAAs through SCFT'R! and the proteasome L2921 |n this way, free AUX/IAA-AUXIN-RESPONSE FACTORs
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From all the studies described in the review, the involvement of MADS-box transcription factors in the regulation of fruit
set and development appears to be evident, even if it is very difficult to place the information present in the literature in a
clear picture. Seedlessness has been reported to occur both as a consequence of either suppression (AGL6, TM8, TM29,
TAP3, SIGLO1, and SIGLO2) or ectopic overexpression (AGL11, TAG1, and TAGL1) of MADS-box genes. In the first
case, the activity of the gene would directly or indirectly be linked either to the repression of fruit growth prior to fertilization
or to maintenance of ovule or pollen viability. In the case of ectopic overexpression, parthenocarpy could represent a
pleiotropic effect that highlights the need for strict spatial localization of MADS-box expression to avoid an untimely onset
of ovary growth. It is interesting to note that in some cases, fruit seedlessness is accompanied by male sterility (TAG1,



TAGL1, AGL11, TAP3, TM29, SIGLO1, and SIGLO2). It is known that early anther ablation can favour parthenocarpy, thus
relieving the ovary growth repression probably by increasing GA concentration 24, Another possible explanation is that
the defective pollen fails to fertilize ovules but still produces some signals that induce fruit initiation. On the other hand,
when parthenocarpy is obligatory, as in the case of TM29 downregulation, parthenocarpic trait is most likely linked to
alteration in the female organ rather than pollen defects. The most interesting case of MADS-box-related parthenocarpy is
that of AGL6 whose suppression results in facultative parthenocarpy, as the transgenic plants produce seeded fruit when
pollinated and seedless fruit under unfavorable conditions. Both pollen and ovules are viable and no pleiotropic effects on
reproductive or vegetative development, except parthenocarpy, are observed in the mutated plants 2. The AGL6
mutation suggests that some MADS-box genes might have undergone sub functionalization, thus conserving only the
activity as ovary growth regulator, while their function in flower organ identity would have been lost. It would be interesting
to deepen the research of MADS-box genes in fruit set, identifying downstream targets and elucidating the relationship
between hormone signaling and MADS-box activity. The observation that some elements of the genetic network
controlling the formation of flower organs and gametogenesis might also be involved in the successive phases of fruit
formation and growth, supports the idea that the two developmental programs are tightly connected.



