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Anodic oxides is part of energy conversion and storage devices.

Anodic Oxides  Energy

1. Introduction

This entry presents studies that bring applied technological aspects that are being developed or are already in the

implementation stage and does not present an in-depth discussion regarding anodic oxide materials’ synthetic

methodology. The fabrication of anodic oxides from anodization of metallic substrates offers several advantages

that can impact the technology economically in biological, environmental, and energy fields. The anodic oxidation is

a facile, low-cost, and scalable method to obtain nanostructured porous oxide films with large surface areas by

strict control of the morphological and structural properties, such as tube length, pore size, film thickness, and rigid

adhesion to the substrate . These features make the anodic films, such as the popular TiO  nanotubes (TiO -

NT) and anodic aluminum oxide (AAO), attractive for the development of a wide range of technologies, including

drug delivery systems , implants , sensors , filtration membranes , photocatalysts for pollutant degradation

, energy conversion  and energy-storage systems , as illustrated in Scheme 1.

Scheme 1. Description of nanostructured anodic oxides in practical applications by the field. Figures used in this

scheme were reprinted with permission from  and adapted from .

In the context of global sustainable strategies used to minimize the problems caused by industrialization and

population growth, scientists have made significant efforts to develop advanced materials and systems based on
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clean processes that exploit renewable energy sources. In this sense, solar energy, a “green” resource, is essential

as a substitute for conventional and non-renewable energy sources due to its abundance, availability, and direct

harvest. The solar light can be directly converted into electric energy by photovoltaic (PV) devices such as solar

cells. On the other hand, the photoelectrochemical (PEC) devices operate using solar energy or another light

source to produce hydrogen gas from water molecules. Considered as a green fuel, hydrogen can be stored or

converted into electric energy in fuel cells.

Therefore, PV, PEC, and hybrid PV–PEC systems are considered attractive technologies for sustainable

production of electric energy and renewable fuel. One of the main challenges in this sector is to improve the

efficiency and performance of these devices by the fabrication of stable photoelectrodes with high photoconversion

rates. In general, TiO -NT is the preferred anodic oxide explored in dye-sensitized solar cells and PEC water-

splitting systems . Due to its photocatalytic properties, chemical stability, and unidirectional orientation,

this semiconductor is frequently used as the photoanode; exceptions include reports of WO   and Fe O  .

The use of copper oxides as photocathodes is emerging . The utilization of AAO as a template or scaffold is

also addressed .

Considering devices that operate essentially via electrochemical processes, the most promising sustainable

systems are the fuel cell (for energy conversion) and the supercapacitors and rechargeable batteries (for energy

storage). In these applications, TiO -NT is also the widely explored anodic oxide, but in this case, the properties of

interest are its chemical stability, low-cost, and high surface area, despite its low conductivity . In fuel cells,

this oxide is employed as support for the catalyst in both anodes  and cathodes  to increase the electrodes’

stability. In supercapacitors, the excellent adhesion between anodic oxide and metal is advantageous for the

fabrication of electrodes without a binder agent, reducing the synthesis steps . In rechargeable batteries, large

surface areas with open frameworks for insertion of ions are the aim. Additionally, the low volume expansion during

the Li  insertion/extraction is an advantage that can increase the stability and safety of the Li-ion battery .

Besides TiO , the interest in the properties of other nanostructured anodic films for energy storage systems, such

as Cu(OH) , NiO, WO , SnO, and Ta O , has been increasing in the field.

2. General Aspects of Anodic Oxide Synthesis for Energy
Applications

Nanostructured anodic oxides are an excellent alternative for developing energy devices’ components due to a

series of specific advantages present in each energy application. However, we can summarize the general

advantages of their utilization as follows:

The anodic oxides are generally synthesized in environmentally friendly experimental conditions (mild

temperature synthesis and low toxicity substances applied);

They offer facile control of synthesis parameters, such as domain morphology, composition, and structure with

the potential to anchor specific catalyst substances to use them as anode or cathode based-materials;

The materials present a high surface area per volume;
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They allow facile modulation of nanostructure architecture to enhance ion transport;

The mostly anodic oxides are chemically stable;

In most cases, they offer excellent adhesion between different layers, avoiding binder agents.

The synthetic routes employed to fabricate the anodic oxides generally involve the following steps: (i) pre-treatment

of the substrate, (ii) anodization, (iii) heat treatment, and (iv) surface modification if necessary. This section depicts

the common aspects of the syntheses of TiO , Al O , WO , Fe O , ZnO, Cu O, ZrO , NiO, SnO, Nb O , and

Ta O , which include the anodization procedure to grow the anodic oxides, followed by heat treatment procedure

for oxide modification or crystallization.

The pre-treatment steps (cleaning, polishing, pre-annealing procedures) will not be described here because they

can vary according to the metal and purpose. For this, we recommend consulting the original papers for details.

Furthermore, since some functionalities were designed to attend to the specific properties of the device´s materials,

the additional steps employed for surface modification of the oxide will be described in the following sections with

each material’s application description.

The anodization consists of an oxidation process of a metallic substrate (M  → M  + ze ) working as the anode of

an electrochemical reactor in a proper electrolyte. The resulting anodic oxide film grown over the metal substrate

can form a rigid compact layer or a nanostructured layer. The former case refers to barrier-type oxide films . The

latter case involves the formation of nanostructured oxide films with different morphologies, such as nanopores,

nanotubes, nanowires, nanorods, nanopetals, and other nanogeometries . The type of oxide formed

depends on the experimental conditions. The main parameters that must be considered to control the morphology

and composition of the anodic film during the anodization step are:

Substrate: composition, purity, rugosity, and surface defects.

Electrolyte: composition, temperature, and stirring.

Electrical parameters: galvanostatic, potentiostatic, potentiodynamic, pulsed, or hybrid methods.

Synthetic route: one-step, two-step or multi-step anodization.

Anodizing time.

The mechanisms of growth of anodic oxide nanostructures and the influences of anodizing conditions on the oxide

film’s final properties are well-known in the scientific literature, with many papers devoted to these topics having

been published in the last decades . In general, to form a nanostructured morphology with a large

surface area, the anodization must be performed in an electrolyte in which the formed oxide is partially soluble, for

instance, oxalate media to produce nanoporous alumina  or fluoride ions to grown nanotubes of TiO  or ZrO

. The pore or nanotube diameter can be controlled by the applied potential and temperature, whereas the

oxide layer’s thickness can be tuned by the anodizing time . The anodizing time can vary from a few minutes

to several hours depending on the layer’s desired thickness, usually obtained in the micrometer range .

Polishing procedures and the use of high-purity substrates tend to increase the orderly arrangement of the

nanostructure. The two-step anodization method can be applied to the production of highly ordered

nanotube/nanopore arrays . This procedure uses an initial anodization step, followed by removing the oxide

layer and a subsequent second anodization step over the nanotextured substrate.
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On the other hand, the oxide’s microstructure and degree of crystallization are controlled by post-treatments

annealing procedures in air or under a suitable gas atmosphere. The composition of the oxide surface can be also

be tuned in this step. The anodization of Cu in alkaline solutions, for instance, leads to the formation of copper

hydroxides that can be converted into CuO or Cu O species after an annealing step . Kang et al.  utilized a

CO atmosphere to convert anodized WO  into WC for a cathode in PEC applications.

The morphologies, compositions, and microstructures of the anodic films are usually analyzed by field emission

scanning electron microscopy (FESEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-

ray photoelectron microscopy (XPS) techniques. The electronic properties are commonly evaluated by diffuse

reflectance spectroscopy (DRS) and electrochemical impedance spectroscopy (EIS).

The usual procedure adopted to form the nanotube arrays of TiO  for energy applications is the conventional

potentiostatic anodization of high-purity Ti foils in organic media containing fluoride ions plus a small amount of

water. NH F and H O dissolved in ethylene glycol (EG) have been the preferred formulae for electrolyte

composition . Other studies substituted EG with glycerol and HF by NaF . Aqueous

solutions, such as CH COOH + HF  and H PO  + NH F , were also reported. It is possible to obtain nanotube

arrays with a diameter ranging from 40 to 160 nm while applying potentials in the 10–60 V range for anodization

times varying from 20 min to 24 h . The high surface area provided a larger number of active sites for

the photo and electrochemical processes. In some cases, two-step anodization was carried out to obtain a high-

ordered nanotube array . The syntheses were usually performed at room temperature, but an exception

includes the anodization performed at 55 °C for the fabrication of TiO -NT bioanodes in microbial fuel cell devices

.

In those applications requiring a transparent conductive substrate, like in solar cells, the TiO -NT membrane was

detached from the Ti metal after anodizing via ultrasonication and transferred to the fluorine-doped Tin Oxide (FTO)

glass, using a TiO  paste to binding the layers .

Figure 1 depicts a surface micrograph obtained by FESEM of a TiO -NT sample prepared via anodization of Ti foil

at 25 V for 90 min in ethylene glycol containing 10% wt. water and 0.75% wt. NH F, after annealing at 450 °C for 2

h. The nanotubes exhibited a pore diameter in the 50–70 nm range with approximately 10 nm of wall thickness

under this condition.
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Figure 1. FESEM surface images with different magnifications of annealed TiO -NT prepared via anodization of Ti

foil at 25 V for 90 min in EG electrolyte containing 10% wt. H O and 0.75% wt. NH F.
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