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The treatment of metastatic renal cell carcinoma has evolved quickly over the last few years from a disease managed

primarily with sequential oral tyrosine kinase inhibitors (TKIs) targeting the vascular endothelial growth factor (VEGF)

pathway, to now with a combination of therapies incorporating immune checkpoint blockade (ICB). Patient outcomes have

improved with these innovations, however, controversy persists regarding the optimal sequence and patient selection

amongst the available combinations. Ideally, predictive biomarkers would aid in guiding treatment decisions and

personalizing care.
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1. Introduction

Renal cell carcinoma (RCC) is traditionally classified according to its histology. Clear cell (ccRCC) is the most common

subtype, accounting for 75–85% of all RCCs. Current first-line standard of care therapies for metastatic ccRCC involve the

use of vascular endothelial growth factor (VEGF) inhibitors, checkpoint inhibitors, anti-CTLA4 agents, or a combination of

these drugs. Choice of therapy is guided by whether the patient’s disease falls under favorite or intermediate/poor risk

based on validated prognostic models. Within each risk category, there are several acceptable alternatives, including

VEGF inhibitor monotherapy, combination immunotherapy (e.g., ipilimumab/nivolumab), or a combination of a VEGF

inhibitor and a checkpoint inhibitor (e.g., axitinib/pembrolizumab). Given the increasing number of available treatment

options for mRCC there is also a growing need for predictive biomarkers to help guide clinicians (Figure 1). We review the

literature regarding the evidence for selecting one type of regimen over another and determining who would benefit more

from either angiogenesis antagonism or immune checkpoint blockade (ICB).

Figure 1. Treatment landscape for metastatic clear cell renal carcinoma.



2. Biomarkers for Immunotherapy

Renal cell carcinoma is often considered an immunogenic tumor. This has been evidenced from pathologic examination of

RCC tumor tissue showing significant infiltration by both T-cells and natural killer cells . In addition, the efficacy of early

immunotherapy agents, like interleukin-2 (IL-2) and Interferon-alpha (IFN-α), and more recently ICB in the treatment of

RCC support this notion pragmatically . ICB targeting the programmed death 1 (PD-1) and cytotoxic T-lymphocyte

associated protein 4 (CTLA-4) pathways have demonstrated favorable outcomes, with ORRs of 25% for anti-PD-1

targeted single-agent therapy and up to 39% and 59% when combined with CTLA-4 or vascular endothelial growth factor

(VEGF) inhibitors, respectively . Consequently, combination strategies with ICB have become the standard of care

for most eligible mRCC patients.

However, since both combination ICB/ICB and ICB/TKI regimens are approved as first-line therapy for mRCC, it would be

beneficial to have clinical biomarkers to understand which tumors are more likely to benefit from an immunotherapy-based

regimen versus a combination regimen with VEGF inhibition.

2.1. PD-L1 Expression

The programmed death-ligand 1 (PD-L1), also known as B7 homolog 1 (B7-H1), is found on tumor and immune cells in

the TME, and its receptor PD-1 on T-cells are the primary targets for this form of ICB. In the era of ICB, expression of PD-

L1 by immunohistochemistry (IHC) has been a focus of much biomarker research across tumor types but in the case of

mRCC it has not borne out to be a very useful predictive biomarker.

When focusing specifically on registration studies for ICB in mRCC, patients without any measurable PD-L1 expression

have benefited from these drugs. In a meta-analysis of six randomized controlled trials of ICB in mRCC an association

was observed between PD-L1 expression and PFS, but the analysis failed to show a significant correlation with OS .

The authors concluded from this data that the role of PD-L1 expression in selecting treatment for RCC was not well

established, in line with FDA drug approvals and the NCCN guidelines which do not include or require PD-L1 expression

. This difference is likely multifactorial and could be due to the unique biology of RCC, related to the non-standardized

testing utilized in for PD-L1 expression as a biomarker in earlier trials, including the use of different antibodies for various

IHC assays and inconsistent cutoffs for positivity, tumor heterogeneity and the dynamic nature of PD-L1 expression on

tumor cells .

Furthermore, prior to the era of immunotherapy, PD-L1 expression by IHC was studied in mRCC and was shown to be

associated with poor prognosis . The observation that PD-L1 positivity is linked to poor prognosis was again reported

more recently in a post-hoc analysis of the COMPARZ trial (pazopinib vs. sunitinib) which showed that patients who were

PD-L1 positive had significantly worse OS and PFS compared to the PD-L1 negative population. This is also supported by

an analysis of CHECKMATE-214 study (nivolumab+ipilumimab vs. sunitinib) which demonstrated that PD-L1 positivity

was more common in patients with intermediate and poor-risk disease as defined by IMDC criteria compared to those with

favorable-risk disease . It is possible that the prognostic implications of PD-L1 positivity in mRCC also have a negative

impact on its usefulness as a predictive biomarker.

2.2. Genomic Markers

2.2.1. PBRM1 Mutations

Differences in the genomic landscape of RCC have also been the subject of much study in the search for clinical

biomarkers for ICB treatment PBRM1 and PBAF complex mutations have drawn much attention in this regard and, as

discussed above, have also been investigated as both a prognostic and predictive markers for VEGF TKIs. In relation to

ICB, PBRM1 was first identified by Miao et al. in a set of 35 patients with mRCC who participated in a prospective clinical

study of nivolumab. Whole-exome sequencing was performed on tissue samples and identified PBRM1 as being strongly

enriched in the group that derived clinical benefit. This finding was then validated in a separate 63 patient cohort treated

with PD-1 or PD-L1 inhibitions alone or in combination with anti-CTLA-4 therapies and replicated findings of association

with clinical benefit .

However, after this initial publication, PBRM1 mutations were subsequently studied in several additional patient cohorts.

An analysis by McDermott et al. of a first-line clinical trial of atezolizumab alone or in combination with bevacizumab vs.

sunitinib failed to demonstrate an association with clinical benefit in patients with PBRM1 mutations in the atezolizumab

monotherapy arm but instead favored benefit in the sunitinib arm . A subsequent analysis from the Checkmate-025

study of patients with mRCC treated in the second-line or beyond and randomized to nivolumab or everolimus showed

that there was an enrichment of clinical benefit in the PBRM1 mutant group in nivolumab-treated patients, though this trial
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did not include a VEGF-targeted therapy. The effect of PBRM1 mutations on response and survival in this study was

modest, with median PFS 5.6 vs. 2.9 months (HR, 0.67; 95% CI, 0.47–0.96; p = 0.03) and median OS 27.9 vs. 20.9

months (HR, 0.65; 95% CI, 0.44–0.96; p = 0.03) .

Finally, a large retrospective analysis (n = 2936) explored the interaction between PBRM1 mutations and immunotherapy

across cancer types and failed to show a statistically significant association with OS (HR 0.9, p = 0.7). Interestingly, this

trial included 189 patients with mRCC treated with ICB and this subgroup did demonstrate an association with OS (HR

1.24, p = 0.47). It was previously hypothesized in the initial discovery study by Miao et al. that PBRM1 mutations

increased interferon-gamma (IFNγ) gene expression and thereby modulated the immune response. However, this

analysis explored the impact of IFNγ signaling in both the cohort studied by McDermott et al. and a cohort from the

previously mentioned COMPARZ trial and showed unchanged or decreased IFNγ signaling in PBRM1 mutants compared

to the wild-type, which conflicted with the hypothesized mechanism of action . Due to the conflicting nature of these

results, doubt has been cast on the potential use of PBRM1 as a biomarker for ICB .

2.2.2. TERT Promoter Mutations

Although much focus is on finding mutations associated with a response, it is also useful to examine the opposite

phenomenon and identify mutations that are associated with resistance to immunotherapy. This would help route patients

to therapies more likely to be beneficial and avoid unnecessary toxicity. For example, in non-small cell lung cancer

mutations in STK11 have been identified as predictors of poor responses to ICBs . STK11 is not a useful biomarker for

RCC since it is very rarely found in RCC on the order of 0.2% of patients based on data from cBioPortal . A

retrospective study of patients with mRCC (n = 75), the majority with clear cell histology (~80%), who received

comprehensive genomic profiling (whole-exome and RNA sequencing) as part of routine care, including both

immunotherapy and targeted therapy, attempted to identify genomic and transcriptomic correlates of clinical benefit. The

authors found that mutations in the TERT promoter were specifically associated with a lack of benefit from ICB. In this

subgroup of TERT promoter mutated tumors the authors also found enrichment of transcription factor targets of MYC and

KATA2, and kinase targets of CDK4, ATM, and MAPK14 .

2.2.3. Multi-gene Expression Signatures

Similar to approaches in VEGF TKI treated patients, researchers have investigated potential tumor genomic signatures

that might serve as predictive biomarkers for ICB. In an exploratory analysis of the IMmotion150 study, the authors used

gene signatures previously defined and representing angiogenesis, immune response (T-effector/IFNγ), and myeloid

inflammatory gene expression to perform a subgroup analysis and investigate associations with response. They found

that tumors with high expression of a T-effector gene signature (T ) were positively associated with the expression of

PD-L1 and CD8 T-cell infiltration. They also showed that within this group there was increased expression of the myeloid

inflammation genes. The T  gene signature was also associated with improved ORR and PFS when compared to the

T  group within the atezolizumab/bevacizumab arm. They also showed that T  was associated with improved

PFS when compared across groups to the sunitinib arm. High myeloid inflammation gene signature expression

(Myeloid ), which had previously been shown to be associated with suppressed T-cell responses, was shown to be

associated with worse PFS in both the atezolizumab monotherapy and atezolizumab/bevacizumab arms .

A separate group utilized machine learning techniques to build upon the prior IMmotion150 gene signatures to define a

specific 66-gene signature created for mRCC using RNA sequencing data from The Cancer Genome Atlas (TCGA)

dataset in cBioPortal. They identified that the genes in the IMmotion150 gene signature were selected by analysis of the

literature and citations which defined the three biological axes explored in the study and not based on an empirical

analysis of the data, which they considered to be a limitation of the previous approach. To develop their signature, they

first leveraged the gene signatures defined by the IMmotion150 study to perform unsupervised clustering to categorize

patients into three groups and confirmed they separated into the same three categories; angiogenesis, T-effector and

myeloid inflammation. They then utilized a separate featured selection machine learning technique to analyze the global

gene expression profile of the sub-classified patients and selected the top 500 ranked and subsequently refined them

using several different techniques to investigate the underlying biology and came up with their 66-gene signature. Using

training and validation cohorts, they were able to show that this signature performed better with regards to association

with OS and DFS than the original IMmotion150 signature. However, interpretation of this signature thus far is limited

since annotation of treatments record and outcome are not available in the TCGA data and survival data was calculated

prior to the approval of ICBs. The signature does, however, hold promise to be tested in cohorts who did receive ICB to

test what they hypothesize as an improvement in the clustering of patients into unique groups defined by tumor biology

.
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In an analysis of the results of KEYNOTE-427 (pembrolizumab monotherapy) 11 separate gene signatures were analyzed

for associations with response. They identified one signature, a T-cell inflamed gene expression profile (GEP), which

stood out demonstrating a strong association with ORR to pembrolizumab. The same T-cell inflamed GEP signature,

however, was not associated with longer PFS or OS in the same study and thus remains hypothesis generating   (Table

1).

Table 1. Summary of gene expression signatures.

Gene
Signature Dataset Genes Key Findings

IMmotion150
Signature 

Sample size:
263 patients
Study Type:
Randomized phase
2 study of
atezolizumab alone
or combined with
bevacizumab
(anti-VEGF) versus
sunitinib

Angiogenesis (Angio) T  associated with

PD-L1 expression and

CD8 T-cell infiltration

T  vs. T  in

atezolizumab +

bevacizumab associated

with improved ORR (49%

vs. 16%) and improved

PFS (HR 0.50; CI 0.30–

0.86)

T  atezolizumab +

bevacizumab vs. sunitinib

improved PFS (HR 0.55;

CI 0.32–0.95)

Myeloid  associated

with worse PFS in

immunotherapy arms

Distinct population of

Myeloid  tumors within

the T  group

T Myeloid  vs.

T Myeloid

associated with worse

activity of atezolizumab

(HR 3.82; CI 1.70–8.60)

VEGFA

PECAM1

ANGPLT4

ESM1

FLT1

CD34

KDR

Myeloid Inflammation

CXCL1

CXCL2

CXCL3

CXCL8

IL6

PTGS2

T-effector (T )

CD8A

CD27

IFNG

GZMA

GZMB

PRF1

EOMES

CXCL9

CXCL10

CXCL11

CD274

CTLA4

FOXP3

TIGIT

IDO1

PSMB8

PSMB9

TAP1

TAP2
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Gene
Signature Dataset Genes Key Findings

66 Gene
Signature 

Sample Size:
Training cohort
469 patients
Validation cohort
64 patients
Study Type:
Retrospective
analysis of ccRCC
patients from The
Cancer Genome
Atlas (TCGA)

Angiogenesis T-effector genes clustered

with Ca2+-flux

Subclasified patients into 3

categories: Angio, T , and

Mixed

Mixed cohort expressed

genes from all four

pathways

Angio cohort had improved

survival compared to T

and Mixed (median OS

90.4 vs. 62.8 vs. 62.8

months)

Angio cohort had better

DFS as compared to T

(HR = 2.2091, p = 0.0201)

and Mixed

(HR = 1.7433, p = 0.0386)

Not yet tested or validated

in a cohort who was

homogenously treated

Developed on data prior to

ICB

VEGFA

KDR

EDNRB

PECAM1

ANGPLT4

NOTCH1

EDN1

FLT1

CD34

STIM2

ESM1

T-effector

PSMB9

PSMB8

LTA

SLA2

PYHIN1

PDCD1

EOMES

CTLA4

CD8A

GZMB

GZMA

TIGIT

PREF1

Ca2+-flux

CD2

CCL5

CCL4

GK2

LCK

LAT

LCP1

CD38

LAX1

CD7

CD3E

ITK

Invasion
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Gene
Signature Dataset Genes Key Findings

XCL2

FOXP3

FERMT3

SLC9A3R2

FASLG

NFATC1

CD72

WAS

PTK2B

CXCR3

CORO1A

CCR5

PDE2A

TBCA2R

FYB1

NES

S1PR1

TCF4

HEY1

ETS1

PTPRB

PPM1F

MCF2L

GJA1

VWF

MYCT1

NOS3

IL16

T-cell
Inflamed GEP

Sample Size:
78 patients
Study Type:
Open-label, single-
arm phase 2 study
of first-line
pembrolizumab

T-cell Inflamed T-cell-inflamed GEP

associated with higher

ORR

No association with PFS or

OS

CXCR6

TIGIT

CD27

LAG3

NKG7

STAT1

CD8A

IDO1

CCL5

PSMB10

CMKLR1

CD274 (PD-

L1)

PDCD1LG2

(PD-L2)

CXCL9

HLA.DQA1

CD276

HLA.DRB1

HLA.E

2.2.4. DNA Damage Repair Mutations, Microsatellite Instability, and Tumor Mutational Burden

Although less common in some other tumor types, RCC can harbor alterations in DNA damage repair (DDR) pathways,

including defects in DNA mismatch repair (dMMR). Loss of function of certain genes related to dMMR defects can lead to

lead to high levels of microsatellite instability (MSI), which has been established as a biomarker for response to

immunotherapy irrespective of tumor type . MSI-Hi tumors are not a common finding in RCC and are estimated to be

present in only 1–2% of cases . As a result, MSI is not a practical biomarker in a broad sense for ICB in RCC since

many non-MSI RCC tumors respond to immunotherapy.
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Looking more broadly, mutations in genes involved in the various DDR pathways, which do not necessarily result in MSI,

are relatively prevalent in RCC. In one cohort published by Ged et al., about 19% of patients (43/229) with mRCC harbor

DDR mutations, with CHEK2 and ATM being the most frequently mutated. In this cohort, they were able to demonstrate a

correlation between DDR mutation status and superior OS (HR 0.41; 95% CI: 0.14–1.14; p = 0.09) in patients treated with

ICB . This finding was also reported in a smaller cohort (n = 34) by Labriola et al. who showed that patients with DDR

mutant tumors had improved disease control (defined as CR, PR, or SD) with ICB .

Another measure of disruption of genomic integrity is tumor mutational burden (TMB). TMB is defined by the total number

of non-synonymous alterations (single-nucleotide variants or insertions/deletions) and is typically calculated from next-

generation sequencing (NGS) data of either the whole exome or large targeted panels. A high TMB is thought to be

integral in promoting increases in the expression of tumor neoantigens which promote T-cell mediated immune responses

against tumors . TMB, similarly to MSI, has been investigated independent of tumor histology and has been shown

to enrich response to ICB . This also led to an FDA approval on 16 June 2020 of pembrolizumab for all TMB-high

tumors (defined as >10 mutations per megabase) regardless of histology.

However, this approval has been met with controversy because of concerns that cutoffs for TMB and its performance as a

biomarker may differ between tumor types. This skepticism is supported in RCC based on some of the available data. For

example, in the study discussed above by Labriola et al., which focused solely on RCC, there was no observed

association between TMB and disease control in patients treated with ICB . This was also seen in a separate and

larger cohort of 592 patients treated with nivolumab (pooled analysis of checkmate 009, 010, and 025) showed no

association with response to PD-1 blockade. Paradoxically, it also has been shown that high-TMB is actually associated

with inhibition of immune cell infiltrates in RCC tumors, which supports and possibly explains these unexpected clinical

observations on a cellular level .

Another interesting observation that may help explain why RCC is such an immunogenic tumor but has a characteristically

low TMB is the distribution of mutations that comprise its TMB . TMB high tumors traditionally have a predominance

of many single nucleotide variants (SNVs) making up the majority of mutations, while RCC on the other hand has a

uniquely high proportion of insertions and deletions (indels) relative to other tumors. This phenomenon was identified as

part of an analysis of the Cancer Genome Atlas study of 5777 solid tumors which identified RCC tumors as having more

than double the median proportion of indels to SNVs. The authors then hypothesized that indels are more efficient in the

formation of immunogenic peptides serving as neoantigens and using in silico prediction models they were able to show

an enrichment of high-affinity neoantigens from indels that were three times that of SNV . This suggests that RCC may

be a case of quality over quantity in regards to immunogenic mutations.

Another approach to improving the performance of TMB as a biomarker is incorporating HLA correction. HLA correction is

a computational method by which the incorporation of loss of heterozygosity of HLA alleles is thought to improve upon

TMB by predicting the proportion of functional neoantigens present. This has been studied in non-small cell lung cancer

and shown to identify and reclassify tumors previously characterized as TMB-high and, in doing so, improve the

association with the response to ICB, but has yet to be studied in RCC .

2.3. Analysis of Immune Cells

In the search for biomarkers predictive of response to ICB, the investigation has necessarily expanded beyond clinical-

and tumor-dependent factors, such as performance status or genomics, and additionally focused on host-dependent

components of the immune system. In order to study the cellular components of the immune system, including T-cells,

neutrophils, NK cells, and antigen-presenting cells, a variety of techniques have been approached, ranging from simple

analytes (like a complete blood count with differential) to more complex methods like flow cytometry and advanced

staining techniques, like multiplex IHC.
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