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Obesity is a modern health problem that has reached pandemic proportions. It is an established risk factor for
carcinogenesis, however, evidence for the contribution of adipose tissue to the metastatic behavior of tumors is
also mounting. Over 90% of cancer mortality is attributed to metastasis and metastatic tumor cells must
communicate with their microenvironment for survival. Many of the characteristics observed in obese adipose
tissue strongly mirror the tumor microenvironment. Thus in the case of prostate, pancreatic and breast cancer and
esophageal adenocarcinoma, which are all located in close anatomical proximity to an adipose tissue depot, the
adjacent fat provides an ideal microenvironment to enhance tumor growth, progression and metastasis. Adipocytes
provide adipokines, fatty acids and other soluble factors to tumor cells whilst immune cells infiltrate the tumor

microenvironment.

obesity adipose tissue tumor progression cancer relapse metastasis cytokines

adipokines extracellular matrix extra cellular vesicles cancer metabolism

| 1. Introduction

The metabolic and cardiovascular risks of obesity are well known. However, it is estimated that 40% of all cancer
deaths are also attributable to obesity L. Indeed, globally, excess body weight is third behind smoking and
infection as an attributable risk factor for cancer, and second to smoking in Western populations [&. Obesity
adversely effects cancer in two ways, (i) by promoting carcinogenesis resulting in a higher cancer incidence and (ii)
cancer progression resulting in an increased risk of mortality 2. In breast cancer, for example, obesity is only
associated with an increased incidence of post-menopausal breast cancer, whilst obesity is a risk factor for
progression in all breast cancer subtypes . The global obesity rate in women is projected to reach 21% by 2025
and this is particularly alarming considering that 55% of all female cancers have an obesity associated mechanism
B, Central obesity, resulting from the overgrowth of visceral white adipose tissue (WAT), has been specifically
linked to cancer progression B, While diet is undoubtedly important in obesity, animal models have indicated that
WAT overgrowth directly promotes cancer progression irrespective of diet B8l Epidemiological studies have
demonstrated a compelling association between cancer risk and obesity. Analysis of the association between body
mass index (BMI) and early stage breast cancer outcomes in the Danish Breast Cancer Cooperative Group (n =
53,816 women) revealed that obese women have a 46% higher risk of developing distinct metastasis at 10 year
follow up compared to normal weight women . Furthermore, a meta-analysis of 82 studies found a 41% and 35%
higher risk, respectively, of all-cause mortality and breast cancer specific mortality in obese women compared to

normal weight women [&. An umbrella review of 204 meta-analyses revealed a strong association between obesity
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and gastrointestinal cancers including esophageal adenocarcinoma (OAC) 8. OAC was notable for a progressive
increase in risk ratio (RR) for each 5 kg/m? increase in BMI (RR 4.8 for a BMI > 40 kg/m?) suggesting a dose—
response effect 2. The top two cancers demonstrating very strong associations with BMI are endometrial (RR
1.48) and OAC (RR 1.45) 19,

In obesity, white adipocytes become hypertrophic and hyperplasic, which results in physiologic changes, including
elevated free fatty acids (FFAs) and triglycerides, increased blood glucose and insulin resistance. Obese adipose
tissue increases production of proinflammatory cytokines, e.g., tumor necrosis factor (TNFa), interleukin-6 (IL-6),
interleukin-1B (IL-1B) and adipokines (e.g., leptin) . Metastasis is the primary cause of cancer morbidity and
mortality and efforts to unravel the molecular mechanisms linking dysfunctional adipose tissue and the ability of

tumor cells to acquire metastatic properties will lead to the discovery of novel targets for metastasis.

| 2. The Metastatic Cascade

The "hallmarks of cancer" define characteristics that are critical for cellular transformation 1. Among the hallmarks
there is only one defining factor, invasion, which distinguishes a malignant and benign tumor . The metastatic
cascade begins with local invasion before progressing to intravasation, arrest at distant organs, extravasation,

micro metastasis formation and finally metastatic outgrowth (Eigure 1).
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Figure 1. Schematic diagram depicting the keys steps of the metastatic cascade from initial presentation as an in

situ tumor mass at the primary site to macroscopically detected metastatic lesions at secondary sites.

In the early stages of tumor development, the primary tumor cell mass typically has an expansive phase in the
absence of invasion, encapsulated in a dense fibrous network (i.e., desmoplasia) 1. A subset of neoplastic cells
acquire the ability to escape through the basement membrane and detach from the primary tumor 12, The
dissemination of cancer cells is a consequence of chromosomal instability that causes continuous errors in
chromosome segregation during mitosis 23, This in turns leads to the rupture of micronuclei and the secretion of
genomic DNA into the cytosol, which activates DNA sensing pathways and NF-kB signaling 2l In addition,
epithelial-mesenchymal transition (EMT) is a transdifferentiating process, which permits epithelial cells to attain a
mesenchymal phenotype with migratory potential 24!, Spontaneous EMT in primary tumor cells can be triggered by
hypoxia, metabolic stressors and matrix stiffness 218 Although some studies have cast doubts on the necessity
of EMT during metastasis L7118l there is evidence for cells expressing both epithelial and mesenchymal markers
within the primary tumor, circulation and at a secondary metastatic site 12, Therefore EMT is being increasingly
understood as a spectrum of transitional stages between epithelial and mesenchymal phenotypes rather than a
binary choice between an epithelial or mesenchymal phenotype 2921 There is evidence that cells in different EMT

stages prefer certain microenvironments, for example, metastatic cells with a predominating mesenchymal
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phenotype proliferate near endothelial and inflammatory cells (21, These tumor cells release factors to attract
immune cells and stimulate angiogenesis, thus promoting an inflammatory and highly vascularized niche [21l,
Although EMT is required for metastatic dissemination, the opposite process of mesenchymal to epithelial
transition (MET) is required for metastatic colonization of distant sites [22l. There is also substantial evidence that
disseminated tumor cells express stem cell markers, such as aldehyde dehydrogenase (ALDH), and functionally
these cells, highly enriched in stem cells markers, have an enhanced ability to cause metastasis [12[23](241[25]
Furthermore, genome wide analysis of both cells undergoing EMT and circulating tumor cells has revealed a
similar transcriptome to primary cancer stem cells (CSCs) thus indicating an overlapping subpopulation [221261127]
In pancreatic cancer, primary CD133* CSCs demonstrated classic CSC characteristics such as tumor initiation and
chemoresistance [28. However, at the invasive front of the tumor CD133* cells are enriched for CXC-chemokine
receptor 4 (CXCR4) and the CD133*CXCR4* population is more migratory than CD133*CXCR4~ [28. Moreover,
patients with increased CD133*CXCR4' cells had more metastatic disease [28. This indicates that
microenvironmental cues within the tumor can trigger heterogeneity in CSCs and CD133*CXCR4" and
CD133*CXCR4" are not a distinct subpopulations but a gradient of stemness phenotypes (1228 CSCs are more
resistant to chemotherapy due to higher expression of multidrug resistance (MDR) or detoxification proteins such
as aldehyde dehydrogenase (ALDH) [29],

Prior to exiting the primary tumor mass, tumor cells communicate with other microenvironments, termed the
premetastatic niche, and this niche is selectively primed by secreted factors and extracellular vesicles to induce
vascular leakage, extra cellular matrix (ECM) remodeling and immunosuppression 9. Cancer cells also adjust the
niche themselves by remodeling the ECM leading to stromal tumorigenesis 2. Cancer patients release large
numbers of cancer cells into the circulation daily, however animal studies of melanoma suggest that <0.1% of these
cells metastasize 1. The most widely studied route of dissemination is through the bloodstream (hematogenous),
however metastatic cells may also migrate along nerves, lymphatic vessels, across coelomic cavities or along the
basal side of endothelial cells and never enter the lumen 12, Intravasation, the dissemination of cancer cells to
organs through the lumen of the vasculature can be active or passive depending on the tumor type,
microenvironment and vasculature 2. The migration of metastatic cells into the circulation relies on chemokines
and complement components that direct tumor cells through the vasculature and metabolic factors that result in an
antioxidant effect 29, Furthermore, the dissemination of circulating tumor cells (CTCs) is supported by a close
association with immune cells such as activated platelets, macrophages and neutrophils 29, When CTCs pass into
small capillaries they become trapped leading to microvascular rupture or the cell undergoes extravasation 29,
Establishing a vascular network is required for metastatic colonization and this can occur though angiogenesis, co-
opting existing vessels or inducing vasculogenic mimicry 2983 Furthermore, cancer cells can also exploit
neuronal signaling pathways for growth and adaptation 29, Cancer dormancy is an arrest phase that can occur
after invasion into secondary sites and in some cancer survivors, dormant cells result in relapse long after the
removal of the primary tumor 2934 The subsequent reactivation is governed by self-renewal pathways (e.g., Wnt,
Hedgehog and Notch) and cells exhibit increased levels of stem cell associated genes (2. While dormant cancer
cells downregulate the expression of immune cell recognizable antigens, persistent host organ inflammation and

the establishment of neutrophils in extracellular traps may transform dormant cells into aggressive metastasis 22!
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(381 |n many of the steps from dissemination to colonization, the microenvironment plays a major role and this can

be significantly altered by dysfunctional adipose tissue in people living with obesity.

3. Mechanisms Linking Adipose Tissue to the Metastatic
Cascade

3.1. Adipocytes and Adipokines

Adipocytes secrete more than 600 soluble factors, known as adipokines, and the most well characterized are leptin
and adiponectin BZ. Intra-abdominal cancers such as ovarian, colon and gastric, preferentially metastasize to the
omentum, a peritoneal organ largely composed of adipocytes, suggesting that adipocytes significantly contribute to
the metastatic cascade (8. Omental adipocytes promote migration and invasion of ovarian cancer cells by
secreting cytokines 2. Neutralization of these cytokines reduced in vivo homing of ovarian cancer cells to mouse
omentum, suggesting that adipocytes promote the early stages of metastasis 22, In addition, ovarian cancer cells
metabolically adapt to the increased availability of lipids by utilizing energy from fatty acids for growth 2. Fatty
acid binding protein 4 (FABP4) was strongly expressed at the adipocyte—cancer cell interface and pharmacological
inactivation of FABP4 decreased cancer cell lipid accumulation, invasiveness and omental metastasis (32,
Circulating levels of FABP4 are markedly increased in obese individuals due to release from an expanded adipose
tissue depot and FABP4 can induce mammary tumor stem cells by enhancing ALDH1 activity via IL-6/STAT3
signaling (941 |n addition, FABP4 promoted aggressive acute myeloid leukemia (AML) in obesity by enhancing
aberrant DNA methyltransferase 1 (DNMT1)-dependent DNA methylation of tumor cells 2, Upon interaction with
cancer cells, adipocytes dedifferentiate into preadipocytes or are reprogrammed into cancer-associated adipocytes
(CAAs), which resemble fibroblasts and have dispersed lipid droplets 3. In breast cancer, matrix
metalloproteinase (MMP)-11 is induced in adipocytes by adjacent invading cancer cells. In the presence of MMP-
11, the activated adipocyte dedifferentiates into a preadipocyte fibroblast-like cell, which can sustain cancer cell
invasion 441431 Bone marrow adipocytes constitute approximately 15% of bone marrow volume in young adults,
rising to 60% by the age of 65 years old 481, They have a distinctive phenotype, which resembles both white and
brown adipose tissue, and they secrete fatty acids, cytokines and adipokines, which influence the whole bone
microenvironment 44, The bone provides a supportive microenvironment for both solid tumor and hematological
metastasis, including breast, prostate and multiple myeloma and bone metastatic cancers primarily occur in older
adults whose bone marrow is heavily populated by adipocytes 4811491 Similarly to the omentum, cancer cells are
attracted to the adipocytes in the metabolically active red marrow and this creates a niche in the bone marrow for
disseminated cancer cells to establish and progress [8l. In addition, leukemic stem cells expressing the fatty acid
transporter CD36, induce lipolysis in gonadal adipose tissue to support their metabolism and evade chemotherapy
B9 Lipids can also be trafficked between bone marrow adipocytes and cancer cells by upregulation of FABP4 and
fuel growth and invasiveness in metastatic tumor cells B, In addition, bone marrow adipocytes have been shown
to promote the Warburg phenotype in metastatic prostate cancer cells through oxygen independent HIF-1a
activation B2, Bone marrow adipocytes are a major source of circulating adiponectin, much greater than WAT 53],

Adiponectin is reported to suppress many elements of the early metastatic cascade including adhesion, invasion,
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migration and stem cell properties via numerous signaling pathways including WNT, NF-kB and JAK/STAT 4, |n
advanced cancer associated with cachexia, hyperadiponectinemia has been observed B2, In addition, increased
adiponectin signaling in dendritic cells can blunt anti-tumor immune responses in patients with metastatic disease
(58] However, the late increase in adiponectin has very little influence on the course of the disease, as its role is
thought to be more prominent in early metastatic spread B4, During the development of obesity, preadipocytes
differentiate incorrectly leading to hypoxia and the induction of hypoxia induced factor-1 (HIF-1) BZ. This inhibits
the expression of adiponectin and increases the expression of leptin, resulting in a reduced adiponectin to leptin
ratio in obesity-associated adipose tissue 28159 A high leptin to adiponectin ratio has been reported to increase the
risk of postmenopausal and triple negative breast cancer (TNBC) progression 61l | eptin is another adipokine
important in tumor progression and secretion of leptin is increased in CAAs compared to mature adipocytes 431,
Leptin levels are increased in the plasma of post-menopausal breast cancer patients, which correlated with a
higher grade, advanced tumor stages and presence of distant metastasis BZ. Leptin exerts it effect through the
transmembrane leptin receptor and only the full length isoform, ObRb, contains the intracellular domain required for
JAK/STAT signaling 2. ObRb was significantly overexpressed in metastatic lymph nodes compared to the primary
tumor in ER-breast cancer patients 3. Furthermore, TNBC patient derived xenografts (PDX) grown in the
presence of primary adipose stem cells (ASCs) isolated from obese donors (0bASCs) had increased HLA1* human
tumor cells and CD44*CD24~ CSCs in the peripheral blood and metastasis compared to ASCs from lean women
(641 |n addition, the knockdown of leptin expression in obASCs suppressed the prometastatic effect 4. There is a
plethora of evidence that leptin induces cell migration and invasion in breast cancer via JAK/STAT3 signaling 2. In
addition, the Notch signaling pathway is a key regulator of leptin induced cell migration in breast cancer obesity
models 831, Leptin has also been shown to promote the CSC phenotype though STAT3 activation and this in turn
recruited a histone methyl transferase causing a repression of miR-200c by epigenetic silencing and the expansion
of CSCs 83, Autotaxin (ATX) is an adipocyte-derived lysophospholipase D that catalyzes the hydrolysis of
circulating or cell associated lysophosphatidylcholine (LPC) to the bioactive lipid lysophosphatidic acid (LPA) €],
Some tumor cells, such as in melanoma, glioblastoma and thyroid cancer, directly secrete ATX leading to a chronic
inflammatory state and decreased acquired immune response 7. In contrast, other tumor cells, such as breast,
ovarian and pancreatic do not produce ATX and instead the tumor microenvironment is the primary source &7,
Interestingly, the ATX gene (ENPPZ2) was the second most upregulated gene in breast CSCs treated with paclitaxel
whilst the LPP2 gene (PLPP2) was downregulated, indicating CSCs may favor an LPA-enriched microenvironment
68 |n a tissue microarray (TMA) of metastatic breast cancer, stromal ATX was highly expressed in bone
metastasis 8. In mice approximately 40% of ATX is produced by adipocytes and this increases when mice are fed
a high fat diet 9, Similarly, in humans ATX production increases in obesity, particularly in inflamed adipose tissue,
and contributes to comorbidities including insulin resistance, hepatic steatosis and atherosclerosis E8IIZHI2I73] |
breast cancer cells both ATX and LPA are associated with mobility and invasive capacity via the JAK/STAT3
pathway or PI3K/MAPK pathways 478 Therefore cross talk between adipose tissue derived ATX and tumors
cells is a potential mechanism for tumor progression Z871, |ndeed preclinical studies of an ATX inhibitor, ONO-
843050 suppresses tumor growth and 60% of lung metastasis in a breast cancer mouse model 8. Targeting other
molecules in the ATX-LPA signaling pathways also results in decreased breast cancer metastasis formation in

murine models 798 The physiological upregulation of ATX occurs in response to inflammation and chronic
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activation of ATX-LPA signaling occurs in diseases such as pulmonary fibrosis, rheumatoid arthritis and
inflammatory bowel diseases 81, A first in class ATX inhibitor, GLPG1690, attenuated idiopathic pulmonary fibrosis
in a Phase lla clinical trial (NCT02738801) and two Phase Il clinical trials are currently underway for this indication
(NCT03711162; NCT03733444) [8283] |n a preclinical breast cancer model, GLPG1690 acted synergistically with
chemotherapy and radiotherapy to improve outcomes 4. Considering the role of ATX in regulating CSCs and
mobility, targeting ATX with inhibitors such as GLPG1690 may also prove to be beneficial in targeting metastasis,

particularly in patients living with obesity, by preventing adipose tissue cross talk.

3.2. Immune Cells and Inflammatory Factors

CAAs secrete more inflammatory factors, such as monocyte chemoattractant protein (MCP-1), RANTES, IL-18, IL-
6 and TNFa than "normal" adipocytes and this can promote invasion and metastasis formation 43183l Furthermore,
the recruitment and activation of immune cell subsets, particularly M1 macrophages, in obese WAT increases local
and systemic levels of proinflammatory cytokines 8. MCP-1 is elevated in obesity and secreted by many cells
including tumor cells, fibroblasts, tumor infiltrating monocytes and endothelial cells 4387, |n cancer cells, MCP-1
induces the expression of NOTCH1 and subsequently promotes the activity of CSCs and neovascularization BZI8],
RANTES expression in the peritumoral adipose tissue of women with TNBC correlated with lymph node and distant
metastasis 2. Furthermore, the RANTES inhibitors, maraviroc and vicriciroc, reduced invasion and pulmonary
metastasis in a preclinical tumor model of breast cancer 29, |L-6 is a pleotropic cytokine involved in immune
regulation and tumorigenesis. One third of total circulating IL-6 originates from adipocytes and circulating levels are
correlated with adiposity 21921 When adipocytes are cocultured with breast cancer cells, adipocytes increase
secretion of IL-6, which in turn promotes invasion and migration of tumor cells 23, Furthermore, IL-6 also plays a
critical role in the biology of CSCs through activation of Notch and JAK/STAT signaling 24183l |n addition to
classical IL-6 signaling, IL-6 trans signaling is a major driver of obesity associated hepatocellular carcinoma (HCC),
through inhibition of p53 induced apoptosis and enhanced angiogenesis (28, |L-6 also promoted HCC progression
via upregulation of osteopontin (OPN), a secretory ECM protein involved in the maintenance of the stemness

phenotype [£7,

The inflammasome is a highly regulated protein complex that triggers caspase-1 activation and subsequent
secretion of IL-1p and IL-18 [28], Obesity related factors, such as cholesterol crystals and fatty acids (palmitate and
ceramide), can lead to unchecked activation of the inflammasome 28, |L-1B expression in primary tumors is a
potential biomarker for predicting breast cancer patients who are at increased risk of developing bone metastasis
(9911001 Fyrthermore, in vitro studies indicate that tumor cells expressing high levels of IL-1B specifically home to
and colonize the bone 1%, A persistent increase of circulating levels of TNFa occurs in obesity, mainly due to the
elevated number of M1 macrophages in obese WAT 8, TNFa stimulates the secretion of MMPs in epithelial
tumors and enhances EMT to promote invasion and migration of tumor cells [83I102I1103]  Fyrthermore, TNFa
increases liver metastasis through inducing expression of cell adhesion molecules, such as ICAM-1, E-selectin and

VCAM-1, on liver specific endothelial cells, and thus enhancing tumor cell arrest and transendothelial migration [194]
105

https://encyclopedia.pub/entry/6875 7/31



Adipose Tissue and Metastatic Cascade | Encyclopedia.pub

Crown like structures (CLSs) are a histological feature of dead or dying adipocytes surrounded by macrophages
and they are increased in obesity associated adipose tissue B4, CLS are associated with free fatty acid (FFA)
release, NF-kB activation and the generation of a proinflammatory microenvironment (081 They are best
characterized for their role in the initiation and progression of breast cancer [2%8 but they are also reported to play a
role in endometrial cancer (224, prostate cancer 198 and non-alcoholic steatohepatitis (NASH)—a major risk factor
for HCC (299, |n breast adipose tissue CLS are not only associated with inflammation but they also drive aromatase
activity resulting in an increased ratio of estrogen:androgen in blood and local tissues 119, The expression of
programmed death-ligand 1 (PD-L1) in adipocytes prevents the antitumor function of cytotoxic CD8* T cells 431, |t
is therefore not surprising that treatment with anti PD-1/PD-L1 immunotherapy in patients with a BMI > 25 (i.e.,

overweight/obese) have improved clinical outcomes compared to normal weight patients 211,

CSCs will only proliferate in specific tumor environments indicating that environmental stimuli are critical to
preserve their phenotypic plasticity, to protect them from the immune system and to facilitate metastatic potential
(1121 High levels of proinflammatory cytokines from obese adipose tissue can stimulate CSC properties 113 TNFa
enhances the CSC phenotype in numerous cell types and is associated with upregulation of stem cell related
genes, chemo resistance and tumorigenesis 1141115111161 Fyrthermore, TNFa upregulates TAZ (a Hippo pathway
effector) and Slug (an EMT mediator), which increase breast CSCs through both canonical and non-canonical NF-
kB signaling L7181 Analysis of TNBC patient datasets reveals high tumor expression of the epigenetic reader
methyl-CpG-binding domain protein 2 (MBD2), specifically the alternative splicing variant 2 (MBD2_v2) expression
and high relapse rate and high BMI 119, |t is postulated that obesity drives high reactive oxygen species (ROS)

levels, which subsequently promotes MBD2_v2 expression and an expansion of the CSC fraction 119,

3.3. Angiogenesis

The processes of angiogenesis and adipogenesis are closely linked. When preadipocytes differentiate into
adipocytes and become adipose tissue, new blood vessels are also formed 129, Conversely inhibition of adipocyte
differentiation also reduces angiogenesis 121, In breast cancer, leptin upregulates all components of the IL-1
system (IL-1a, IL-1B, IL-1Ra and IL-1R tl) and both leptin and IL-1 together promote angiogenesis through
expression of VEGF/VEGFR 221, Furthermore, leptin upregulation of VEGF/VEGFR2 was impaired by IL-1 signal
blockage 122, |n addition, obesity leads to an increase in tumor infiltrating macrophages with activated NLRC4
inflammasome and increased IL-1B production in breast tumors 123l This leads to a NLRC4/IL-1B dependent
upregulation of adipocyte derived angiopoietin-like 4 and enhanced obesity associated tumor angiogenesis 23],
Anti VEGF therapy has fallen short of expectations, particularly in breast cancer where the FDA revoked approval
for bevacizumab because of a lack of overall survival benefit 124, Anti VEGF therapy resistance is partly driven
through expression of proinflammatory and other alternative angiogenic factors, many of which are also increased
in obesity 221125] Fyrthermore, breast cancer patients with obesity are less sensitive to anti VEGF treatment and
they have increased systemic concentrations of IL-6 and fibroblast growth factor-2 (FGF-2) 128 The elevated IL-6
was associated with increased IL-6 production from adipocytes and myeloid cells within tumors and IL-6 blockage
abrogated obesity induced resistance to anti VEGF therapy at both primary and metastatic sites 128, Vasculogenic

mimicry (VM) is a tumor vascular system that is independent of angiogenesis of endothelial cells, and is associated
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with both poor survival in multiple tumor types and anti VEGF therapy resistance 1271, Notably, the adipose tissue
secretome has been shown to induce melanoma cells to arrange in 3D vessel like structures, characteristic of

vasculogenic mimicry 128 supporting a role of adipose tissue in this process.
3.4. Metabolic Repogramming

An essential function of adipocytes is energy mobilization and therefore a metabolic interaction between cancer
cells and adipocytes is not surprising. The Warburg effect suggests that due to mitochondrial dysfunction,
malignant cells prefer to produce adenosine triphosphate (ATP) via glycolysis instead of oxidative phosphorylation,
even in the presence of oxygen 129 |n parallel, cancer cells are able to use alternative sources of energy such as
amino acids and lactate from the microenvironment. Bone marrow adipocytes promoted the Warburg phenotype by
increased expression of glycolytic enzymes, increased lactate production and decreased mitochondrial oxidative
phosphorylation in metastatic prostate cells by paracrine signaling 2. The "reverse Warburg effect" theory
proposes that cancer cells induce oxidative stress in the neighboring stromal cells by secreting ROS and triggering
aerobic glycolysis and production of high energy metabolites, especially lactate and pyruvate. These metabolites
are then transported through the "lactate shuttle" to sustain the anabolic needs of adjacent cancer cells [130131]
The effect has been mainly described in stromal fibroblast cells, however given that ASCs and CAA are fibroblast
like cells, it is likely they are also important contributors. Indeed it has been reported that the "reverse Warburg
effect" was induced during the co-culture of adrenocortical carcinoma cells with ASCs 232, Ketone bodies are
another catabolite produced and released by glycolytic adipocytes and they are an ideal substrate for ATP

production by driving oxidative mitochondrial metabolism leading to enhanced tumor invasiveness [241[133],

A key characteristic of CAA is their loss of lipid content. The FFAs released by adipocytes after lipolysis are stored
in tumor cells as triglycerides in lipid droplets 234, Tumor cells then release FFAs from lipid droplets though an
adipose triglyceride lipase dependent lipolysis (ATGL) pathway 134, ATGL is upregulated in tumors on contact with
adipocytes and it correlates with aggressiveness by stimulating tumor cell invasion 234, The FFAs also act as
structural units for newly synthesized membrane phospholipids and cancer cell membranes become enriched with
saturated and/or mono unsaturated fats leading to changes in membrane dynamics (133, This results in cancer
cells that are more resistant to oxidative induced cell death and reduced the uptake of drugs X34 Advanced
metastatic melanomas frequently grow in subcutaneous tissues largely composed of adipocytes 1361 Adipocyte
derived lipids are transferred to melanoma through the lipid transporter FATP1 and a small molecule inhibitor of
FATPs reduced melanoma growth and invasion 2381 Furthermore in AML, leukemic blasts activate lipolysis in

neighboring bone marrow adipocytes leading to the transfer of lipids to the blast through FABP4 137],

Amino acids such as glutamine, glycerine, serine and proline also have important roles in the asymmetric
metabolism of amino acids between cancer and stromal cells [43]. Glutamine is a pivotal source of the TCA cycle
intermediates and ATP in cancer cells, and the substrate of the antioxidant glutathione 3811391 Stromal cells within
the tumor microenvironment harness carbon and nitrogen from non-canonical sources to synthesize glutamine and
it is used by the tumor cells to promote growth and metastasis 149, Glutamine is downregulated in obesity and is

inversely associated with proinflammatory gene expression and macrophage infiltration 41, pPancreatic ductal
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adenocarcinoma (PDAC) cells rely on glutamine utilization to fulfill their metabolic requirements and it is the most
depleted amino acid within the PDAC microenvironment 142, Glutamine deficiency leads to the induction of EMT
through the upregulation of the master EMT regulator Slug 12!, |n addition, as glutamine levels decline, tumor cells
become more reliant on asparagine for proliferation and protein synthesis 143, Asparagine affects the metastatic
cascade at multiple stages. At the primary tumor level, asparagine promotes EMT and intravasation 144145 | the
circulation asparagine helps circulating tumor cells survive shear and oxidative stress whilst at a distinct metastatic
sites, asparagine facilitates cell growth and survival by inducing glutamine synthetase (GLUL) expression and
glutamine biosynthesis [14411145]

Citrulline and nitric oxide are generated by tumor cells by catabolizing the semi essential amino acid arginine 146l,
Nitric oxide facilitates glycolytic activity and suppresses oxidative phosphorylation to promote proliferation [248],
Citrulline is secreted into the ECM and is taken up by stromal adipocytes, before being converted back into
arginine and released for cancer cells [1481. Depriving tumor cells of arginine has cytotoxic effects through apoptosis
or autophagy depending upon the tumor type, and decreasing the ability of tumor cells to migrate and adhere to the
ECM 147 Arginine dependent migration requires arginine to be metabolized by two major enzymes, arginase
(ARG1) and nitric oxide synthase (NOS) 147 |n HCC, higher expression of ARGL1 is positively correlated to
aggressive tumor growth and poor disease free survival 248l |n vitro studies revealed that overexpression of ARG1
enhanced arginase activity leading to multiple processes that contribute to progression including increased cell
viability, migration, invasion and EMT 28] Obesity coupled with PDAC results in accelerated tumor growth and
enrichment in pathways regulating nitrogen metabolism. The mitochondrial form of arginase (ARG2) that
hydrolyzes arginine into ornithine and urea is induced upon obesity and is accompanied by PDAC growth and
increased nitrogen flux from 15N-glutamaine into the urea cycle, the principle pathway for ammonia detoxification
(2491 |nfusion of 15N-arginine in murine models demonstrates a shunting of arginine catabolism away from the urea
cycle into creatine synthesis, resulting in ammonia accumulation specifically in obese tumors 149 The biological
consequences of ammonia accumulation in the tumor microenvironment is not fully understood but it has been

shown to directly generate amino acids through glutamate dehydrogenase activity 159,

Hyperinsulinemia is a hallmark of chronic obesity and insulin stimulates the hepatic synthesis of the peptide IGF-1
(1511 Three quarters of breast cancer patients show activation of insulin/IGF-1 signaling and this rises to 87% in
patients with invasive breast cancer 152, |n preclinical models, blocking IGF in combination with paclitaxel
significantly reduced tumor cell proliferation and lung metastasis 152, Due to the frequent dysregulation of the IGF
system in cancer, various components of this system became attractive anticancer targets. However, clinical trials
using IGF-1 receptor blocking antibodies failed to meet expectations, except in a small number of malignancies
(153][154] More recent developments reveal that dysregulation of the IGF system results in a substantial expansion
of the cancer stem like subpopulation by supporting EMT and self-renewal signaling pathways 153!, |GF signaling
regulates these pathways in multiple ways though i) stimulation of the transcription factors of the ZEB and the Snail
family implicated in the EMT program, ii) interacting with pluripotency transcription factors (e.g., Oct-4, SOX2,
Nanog, p53 and HMGAL proteins) and iii) regulation of development signaling factors (e.g., Wnt/p-catenin, Notch
and Shh pathways) classically involved in cell stemness 23], |ntriguingly, in HER2+ breast cancer patients, high

IGF-1 in normal weight patients showed a superior recurrence free survival compared to low IGF-1 158 |n
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contrast, high IGF-1 in overweight patients was associated with a reduced recurrence free survival 133 Obese
mice have a heightened inflammatory response in the liver and an increased incidence of metastatic colon
carcinoma cells to the liver 1381, Moreover, liver inflammation induced by obesity was abrogated in liver specific
IGF-1 deficient mice leading to a significant reduction of in liver metastasis 28], Furthermore, IGF-1 promotes

neutrophil polarization to a tumor promoting phenotype and the induction of a prometastatic microenvironment in
the liver 1571,

3.5. Extracellular Matrix

In addition to adipocyte hypertrophy and dysregulated lipid metabolism, heightened inflammation, hypoxia and
abnormal angiogenesis, obesity is also associated with ECM remodeling. Once a primary tumor is established,
cells migrate and invade to form satellite tumors within centimeters of the original tumor mass and/or disseminate
through the lymph nodes and vasculature to form secondary macrometastases at distance sites (Figure 1). This
progression sequence is dependent on the ability of cancer cells to traverse the ECM. The adipose tissue ECM is a
three-dimensional, non-cellular structural support of the numerous cell types that reside in the adipose tissue. It is
composed primarily of collagens, fibronectin and to a lesser extent lamins that are supplied by a number of resident
cell types including fibroblasts, adipocytes and preadipocytes 158l |n obesity, the highly dynamic adipose tissue
ECM is constantly undergoing remodeling and reorganization to accommodate increased adipocyte numbers and
adipocyte hypertrophy. A rapid increase in adipose tissue volume can result in regional hypoxia, which triggers
excess deposition of fibrillar collagens by adipocytes and myofibroblasts, immune cell infiltration, adipose tissue
fibrosis, a desmoplastic stroma and increased tissue stiffness, with overall behavior described as similar to "a
wound that never heals". This state of chronic low-grade inflammation within the adipose tissue drives obesity-
associated pathologies including diabetes 1221601 cardiovascular disease 181 and cancer. Indeed, it is very similar
to the microenvironment of a thriving tumor mass and thus trophic cancer cells that home to the adipose tissue are
well supported by these suitable surroundings. Fibrosis is a hallmark of cancer, and desmoplasia within the tumor
microenvironment, is a marker of poor prognosis in cancer [262163] and can negatively impact drug delivery [164]
(165] |n the case of PDAC, obesity is associated with aggressive tumors with poor prognosis, and adipocyte
accumulation in the malignant pancreas 188, Obesity-induced accumulation of high adipocyte numbers in the
pancreas has been shown to induce inflammation and excessive accumulation of ECM components, i.e.,

desmoplasia, which promotes tumor progression and resistance to chemotherapy 1641,

Adipose tissue is the main component of the breast cancer microenvironment, crosstalk between the breast cancer
cells and adipocytes or other adipose stromal cells stimulates the secretion of even larger quantities of ECM
proteins, increasing matrix stiffness and scar formation, further enhancing EMT and local invasion of tumor cells.
Within the adipose tissue, invading breast cancer cells manipulate adipocytes to form fibroblastic CAAs that
secrete large volumes of ECM proteins including collagen I, lll and IV, and the cleavage product of collagen 1V,
endotrophin, which is associated with breast cancer metastatic spread [82I[167]l168] Fyrthermore adipocyte collagen
IV has been shown to play a role in the early stages of tumor growth in breast cancer 269, Recently, it has been
shown that breast cancer secreted PAI-1 can stimulate CAA collagen biogenesis and reorganization via the

induction of a lysyl hydroxylase protein, PLODZ2, facilitating the migration of breast cancer cells along aligned
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collagen fibers, in vitro and in vivo, further promoting metastasis 179, Additionally, tumors growing in the adipose
tissue-rich microenvironment can induce morphological and functional changes in ADSCs so that they differentiate
into a CAF-like myofibroblastic phenotype. Breast cancer cells can induce the differentiation of ADSCs to CAFs
involving a mechanism dependent on TGF-3, and these ASC-derived CAF-like cells can promote breast cancer cell
motility and invasion in vitro, and expressing high levels of stromal-derived factor 1 (SDF-1), a chemokine
associated with a more aggressive and invasive cancer phenotype L7172 Dyring obesity-induced fibrosis, as
adipocytes become encased in the rigid ECM, necrosis ensues and dysfunctional adipocytes stimulate the
recruitment of macrophages to the site, histologically forming CLS around the dying adipocytes 73l The
contribution of these activated macrophages to ECM production most likely occurs through their effects on other
cell types. They are a major source of TGF-3, PDGF and other chemokines that attract and activate more ECM
protein producing fibroblast type cells to the adipose tissue 74175 Finally, fibrosis dynamics are tightly regulated
by the metalloproteinase (MMP) protein family, which cleave collagenous fibers, enabling matrix remodeling. There
are many MMPs associated with obesity 278 in particular MMP-11 (also known as stromelysin-3/ST-3) has been
shown to be overexpressed by adipocytes as a result of stimulation by invading breast cancer cells 270, MMP-11 is
important for collagen VI folding and it is also known to negatively regulate adipogenesis and can dedifferentiate
adipocytes so that they can acquire a more fibroblast-like phenotype that benefits the invading tumor cells via

involvement in adipose tissue fibrosis and ECM remodeling 22771,

3.6. Extracellular Vesicles

In addition to the milieu of adipose tissue secreted factors discussed in the previous sections, there is now
evidence highlighting the role that adipose tissue derived extracellular vesicles (EVs) play in guiding and enhancing
the metastatic process. EVs are lipid membrane enclosed particles, measuring on the nanometer scale, that can
be classified as either minute exosomes (<100 nM) or larger microvesicles (<1000 nM), which facilitate the
horizontal transfer of cellular cargo, including nucleic acid, proteins, lipids and metabolites between communicating
cells L7873 It js not clear whether obesity alters the content of EVs produced by adipocytes, however in the
obese setting larger quantities of adipocyte-derived EVs are secreted compared to lean conditions 282, While the
role of cancer cell-derived EVs in manipulating cells in the tumor microenvironment including adipocytes is well
established [181I[182]183] yery |ittle attention has been given to the bidirectional role EVs play in adipocyte-cancer
cell communication, and particularly the influence of adipocyte-derived EVs on tumor cell behavior. Nevertheless, a

small number of recent studies demonstrate a link between adipocyte EVs and tumor progression in obesity-driven
lung cancer (284l breast cancer 183)188] and melanoma [18QI187],

One way in which adipocytes can promote tumor progression is through metabolic cooperation, by providing a local
supply of fatty acids for the process of fatty acid oxidation (FAO) within tumor cells, an emerging favorable
metabolic pathway that enhances tumor invasiveness, proliferation and stem cell properties [180188]189] | the |ater
stages of tumor progression once the tumor cells have invaded the adipose tissue, secretion of tumor-derived
soluble factors can stimulate adipocyte lipolysis and extracellular release of FFAs into the surrounding

microenvironment [B2134]1188] Aside from direct release of FAs from adipocytes, EVs released by adipocytes can
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also be used as a method to transfer molecules including FA substrates and the protein machinery required for

FAO to cancer cells either locally or over larger distances, e.g., through the circulation and other tissues.

Epidemiological studies have identified a link between melanoma aggressiveness and obesity 120191 Aptly,
subcutaneous adipocytes are one of the main components of the tumor microenvironment of invading melanomas
and indeed melanoma cells have been demonstrated to internalize naive adipocyte (i.e., not previously exposed to
cancer cells)-derived EVs, resulting in amplified FAO and an enhanced migratory and invasive tumor cell
phenotype 189 | azar et al. demonstrated that melanoma cells cultured with adipocyte secreted EVs had an
increased ability to form lung metastases in mice xenograft models, with a concomitant upregulation of tumor cell
FAO. As previously mentioned obese-derived adipocytes secrete higher numbers of EVs compared to their lean
counterparts, thus when comparing the effect of adipocyte EVs derived from obese versus lean conditions, equal
concentrations of EV preparations were applied to melanoma cells. Noticeably, in obese conditions only adipocyte-
derived EVs elicit a heightened effect on melanoma migration, in addition to enhancing clonogenicity and
metastatic potential. Thus differences in the cargo content of these EVs as opposed to the sheer number of
vesicles are most likely responsible for this heightened effect. Recent in-depth labeling experiments indicate that
around 30% of the proteins within the adipocyte EVs are sufficiently transferred to melanoma tumor cells, and
these include proteins involved in EV transport, the transport and storage of FAs, mitochondrial FAO and oxidative
phosphorylation [187, Efforts to understand how an obese state heightens the effect of adipocyte EVs on FAO-
induced functions of melanoma cells have revealed that the level of FAO enzymes in melanoma tumor cells is
unaltered following uptake of obese versus lean derived EVs. In contrast adipocyte EV supply of FAs and
subsequent trafficking to melanoma cells was increased under obese conditions, resulting in enhanced substrate
availability and FAO, and the altered mitochondrial dynamics that is critical to melanoma cell migration and
invasion. Thus in the obese setting, it is the increased transfer of substrate (e.g., FA) and not machinery (FAO-

related enzymes) that enhance FAO in recipient melanoma cancer cells 1871,

In whole adipose tissue, aside from mature adipocytes, EVs are found in the supernatant ASCs. While adipocyte
EVs are linked to enhanced tumor invasiveness and metastatic potential via lipid metabolism, current literature
suggest ADSC secreted EVs play a role in angiogenesis 192119311194] 'immune modulation 195119611971 and tumor
development 198 \When exosomes secreted from the preadipocyte cell line, 3T3-L1, are injected into the
mammary fat together with breast cancer cells, primary tumor initiation and growth is enhanced. Of particular
interest in this review, ASC derived exosomes have been shown to promote proliferation and migration, at least in
part through the modulation of Wnt/B-catenin signaling, a key pathway in tumor stemness, EMT and metastasis
(1991[200] ' ASCs are abundant in the microenvironment of highly metastatic osteosarcoma. Recently ASC exosomes
has been shown to increase proliferation, invasion and migration of osteosarcoma cells in vitro, and growth and
metastasis in vivo, via an induction of COLGALTZ2, a prometastatic gene that subsequently activates downstream
EMT targets vimentin and MMP-2 and -9 294 Studies regarding adipose tissue secreted exosomes, be it
adipocytes or ASCs, are limited to a small number of studies and a small number of tumor types. Further research
is required to understand the role, if any, of adipose tissue-derived EVs in other cancer types, which share an

intimate relationship with adipose tissue and are driven by obesity.
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