
Data Acquisition and Storage for Smart Manufacturing | Encyclopedia.pub

https://encyclopedia.pub/entry/20363 1/13

Data Acquisition and Storage for Smart
Manufacturing
Subjects: Engineering, Manufacturing

Contributor: Athina Tsanousa

The evolution of technology and especially the Internet of Things (IoT) has led to a new kind of manufacturing

known as Smart Manufacturing. Smart Manufacturing is an application of the IoT that focuses on using

inexpensive, small-sized, and smart devices that are all interconnected so that they can increase productivity and

improve the health of the machines. Big Data in Smart Manufacturing systems are continuously generated data in

high volumes produced by said smart devices and are available in various forms, e.g., log files, signal streams, or

sensor data. A Big Data analysis system should be able to use these data in real time, as well as save them for

historical analysis and long-term pattern detection.

smart manufacturing  data fusion  industry 4.0  multimodal sensors

1. Data Acquisition Methods and Technologies

In , a comprehensive review of Big Data analytics throughout the product lifecycle was made. Most notably,

regarding the data acquisition phase of the lifecycle, it was acknowledged that manual-based data acquisition

methods are still used in various stages of the lifecycle process, thus making the acquired data from these

approaches inaccurate and untimely, and as a consequence, the decisions based on them are usually ineffective.

The authors  suggested some challenges of data acquisition that need further research to be resolved and used

smart mobile devices to provide an example on how IoT technologies can be embedded into the physical world

and be able to gather data throughout the whole product lifecycle. A detailed hierarchical architecture of a smart

factory was described by , emphasizing the need for Wireless Sensor Networks (WSNs) in a smart factory for

data monitoring, acquisition, and logging. ZigBee and Bluetooth were also mentioned, on top of Radio-Frequency

Identification (RFID), for real-time data acquisition and were described as good choices when it comes down to the

cost of the industrial automation of wireless technologies. Furthermore, the devices responsible for data acquisition

should be easy to set up and connect with interfaces capable of scaling up.

One methodology employed by  was a monitoring tool organised in a WSN. Part of the monitoring tool is a Data

Acquisition Device (DAQ) that uses split-core current transformers, closed-loop Hall effect sensors, and a camera

to create an easy and not intrusive way to collect data by monitoring the status of the machines. The researchers

of the paper used multiple DAQs on the shop floor and used a central gateway to collect and organise the data into

packets before they were transmitted. The WSN that was used for data extraction utilised the DIGI XBee ZigBee

Radio-Frequency (RF) module. As the paper described, an OPC Unified Architecture (OPC-UA) was used. The

OPC-UA provided an extensible data model, which provided the data schema. A NoSQL database was used, as it
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proved to be more flexible than a Structured Query Language database (SQL) because of the heterogeneity and

the different data that were being generated. The authors of  create a Cyber–Physical System (CPS) that uses a

semantic sensor network. Focus was given on the way data are gathered from the physical sensors. To manage

the large volume and velocity of the data, the authors proposed an architecture in which the data are collected

through an OPC-UA, an industrial M2M communication protocol. There exists a considerable body of literature on

data flow models, but most notably, Reference  suggested frameworks that allow users to model their application

via visual editors. These programs enable the users to receive data from external sources such as IoT devices and

smart sensors.

In , the authors suggested an architecture design for a smart manufacturing system. Furthermore, they provided

detailed considerations of the way a smart Manufacturing Execution System (MES) should be designed. For real-

time data acquisition from the shop floor, the OPC-UA technology was proposed. The authors of  expanded on

the topic of data transmission with the introduction of WiFi direct, 4G LTE, and Z-Wave. There was also the

mention of the protocols being used with these wireless technologies, which include IPv6, MQTT, SOAP, and

REST, among others. The authors also mentioned a series of compatible with Supervisory Control And Data

Acquisition (SCADA) communication networks such as OPC, Open Database Connectivity (ODBC), RS232, and

Dynamic Data Exchange (DDE), as well as some wireless communication standards such as the Highway

Addressable Remote Transducer (HART) and ISA100.11a. The most prominent of these protocols are the MQTT

and REST API. The MQTT protocol is used to acquire and transmit data from large industrial environments to the

cloud where the processes producing the data can be monitored and controlled. The REST Application

Programming Interface (API) provides a way to securely collect data from the IoT devices, where the data are

collected in formal message arrays and the receivers split those individual messages so the producing device can

be identified. SCADA systems provide a fully connected system that a manufacturer can use not only to acquire the

data, but also to handle, manage, and archive them long term. Some known SCADA systems are SIMATIC SCADA

Systems from Siemens, AVEVA™ Plant from Schneider Electric, Proficy HMI/SCADA from General Electric, and

HMI/SCADA from ABB.

A demonstration of real-time data acquisition using the MQTT protocol was described in . The authors

implemented a system using temperature and humidity sensors so they could generate data to work with the

protocol. For the test, they generated data for 60 s and compared the ability between the Hypertext Transfer

Protocol (HTTP) and the MQTT protocol to transfer from the hardware (i.e., sensors) to the server and store them

in a MySQL database. To minimise the error and loss of data, each transmission had a sequential ID so the

completeness of data could be checked. A conclusion was made that the use of the MQTT protocol proved to be

up to six-times faster than HTTP at sending data. On the more technical side, it was reported in  that depending

on the application and the network coverage required to send data different, protocols may need to be used. Low-

Energy (LE) Bluetooth, Near-Field Communications (NFC), and RFID, among others, are technologies used for

short-range communication. As a result, industrial applications that require a broader field to be deployed need

solutions that can be both energy saving while maintaining a significant coverage area. Such a technology is the

Low-Power Wide-Area Network (LPWAN), which includes Sigfox, LoRa, and the Narrowband IoT (NB-IoT) .
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A Big Data pipeline for data streaming in Industry 4.0 was described in . Moreover, data collection and data

storing tools were compared and presented. Such tools are Apache Kafka, RabbitMQ, and Amazon Kinesis, which

are considered for pushing a high volume of messages that are produced from data producers (i.e., sensors) and

even Apache Storm to process and discard “useless data”, which were tagged as less important or out of context.

In , a system that is capable of data monitoring and acquisition of a Computerised Numerical Control (CNC)

machine tool in intelligent manufacturing was proposed and developed. Most notably, the authors compared the

different data acquisition methods from a CNC machine, not only on the different data types that can be collected,

but also the technical difficulty and implementation costs. For data acquisition, the MTConnect protocol was

selected, while for the database, a system that uses the ODBC method was the choice. The machine tool

networking was based on an industrial Ethernet and Transmission Control Protocol/Internet Protocol (TCP/IP)

technology. Working also with CNC machines, Reference  provided a thorough explanation of the way a CNC

machine generates data and how these data are acquired, transmitted, and stored. CNC data can be split into two

main sources: controller data and external sensor data. As is usual for the sensors, the collected data contain noise

from external interference, and for that reason, a necessary step is to clean and preprocess the data. For machines

such as a CNC system, a high amount real-time data in the controller is required. Some of the most-used

technologies in the field are Ethernet, Profinet, and EtherCAT, but in order for them to work seamlessly in the

system, the sensors need to be equipped with acquisition cards.

Previous research showed that data acquisition in real time is based on the configuration of the smart environment

. Specifically, it was described that the first part of the data acquisition is the data collection, during which

raw data are gathered using various technologies depending on the application. Moreover was proposed that Ultra-

High-Frequency (UHF) RFID readers can be used to track and collect data in real time from the manufacturing

process. Regarding the transmission of the collected data, it was mentioned that for real-time data such as

temperature, vibration, and pressure, the Internet, wireless, and 4G methods were used. As far as non-real-time

data (e.g., maintenance history) transmission are concerned, tools such Sqoop are preferred. A more in-depth look

at the way RFID technology is used to collect data from the shop floor was provided by , where the authors

explained step by step the system architecture they created. Data flow starts from RFID tags, which are attached to

the input and output of their manufacturing section. This allows for real-time monitoring of the manufacturing

process and can update individual data from each part. The authors concluded that such an architecture (RFID-

based IoT solution) with the ability to closely monitor the manufacturing sections leads to improvements in the

traceability, quality, and tool wear prediction.

Some authors  have also suggested Industrial Internet of Things (IIoT) architectures, where the data

collection method was thoroughly described. Specifically, all kinds of manufacturing data (e.g., equipment status

data, product data, or measurements) can be gathered using wired or wireless methods. The wireless methods

include, mostly, as previously mentioned, RFID readers that obtain the raw data. Hive and HBase have been

introduced as a distributed data storage system. One way that is considered for data transmission is the Flume

interface, which forwards the data to a selected storage system.
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2. Data Storage Software Solutions

Concerning data storage, a distributed approach is usually the choice where a Distributed Database System

(DDBS) is used to store structured data and the Hadoop Distributed File System (HDFS) or NoSQL databases for

unstructured data. Other alternatives are the C Open Source Managed Operating System (COSMOS) and

Haystack. Especially for distributed file systems, the Google File System (GFS) was one of the first systems

developed to handle data-intensive applications.

MongoDB, a NoSQL database, is one of the most popular databases at the moment, and the authors of  used it

to store the sensor data that were gathered by the DAQs. As was mentioned by , relational databases such as

MySQL are not an option due to the complicated nature of the manufacturing data. Subsequently, the authors

considered a distributed database as an appropriate option because of its high performance, efficiency, and

scalability.

Regarding data storage solutions being proposed, the authors in  listed, described, and compared commonly

used technologies such as Hadoop Hive and MongoDB. A distinction was made between the data models that

were used: firstly, the file system data model, for data stored in a schema-less manner and read in a structured

manner with a processing time based on the processing needs of the application; secondly, document-based data

model; lastly, a column-based schema. A reference was made regarding the recent data storage technologies and

their capabilities to process data for critical real-time applications.

Prior research  suggested that shop floor data on a manufacturing site can be gathered using what is called a

SCADA system. SCADA provides a singular interface, where all the gathered data collected from different smart

devices can be transmitted. Among SCADA, Reference  mentioned the Protocol Data Unit (PDU) as an

alternative data acquisition tool. It was also suggested that the combination of IoT and cloud services gives the

ability for different equipment to be connected and collect huge amounts of data. To organise data in a methodical

and effectual way, Database Management Systems (DBMSs) have been created. According to , these tools can

be split into two categories, relational DBMS and non-relational DBMS. The first category includes SQL databases,

meaning databases that usually store data in tables of records. Commercial solutions for SQL databases are

Microsoft SQL, PostgreSQL, Oracle, and MySQL. Regarding NoSQL databases, it is possible to use various types

of data such as text, binary, and records. One of the benefits of NoSQL over SQL is that it is scalable and can

support huge volumes of data, making it perfect for managing data coming from sensors and smart devices. In 

, a straightforward software solution explaining the pros and cons of each one was provided. The most

commonly used solution is Apache Hadoop, but the authors  also proposed other options such as: Redis,

SimpleDB, CouchDB, and MongoDB, just to name a few. More research  described the criteria of the data

model and used them to identify different models where each of the previously mentioned software solutions apply

the best.

Authors such as  provided a more technical side to the way data being acquired and stored. Even though it was

mentioned that the data were collected manually, there was an in-depth review of the storage methods. As has
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been previously reported by the literature , the most adequate NoSQL databases for real-time data storage are

HBase and Cassandra. However, it was demonstrated by  that Online Transaction Processing (OLTP)-oriented

NoSQL databases can lack the support for fast sequential access over a significant amount of data, which

sometimes can prove to be a hurdle when it comes to data analytics. Hadoop BDW is proposed as the opposing

solution that can handle fast sequential access.

A data storage framework was presented in  that can deal with various types of data collected from different

devices, for instance RFID readers, monitors, or thermometers. Due to the heterogeneity and volume of data, there

is no perfect method for efficiently storing and accessing them. The proposed architecture by the authors included

several modules. In more detail, HDFS was used for unstructured file storage, while a database module using

NoSQL and relational databases was used to manage the structured data. The authors also investigated a data

storage framework capable of being a feasible solution to challenges such as a large volume of data, different data

types, rapid generation of data, and the complicated requirements of data management. In detail, for structured

data, a database management model was created that combined and extended multiple databases. For

unstructured data, a common solution was followed. The authors explained in great detail how the framework

extended HDFS for multitenant data isolation. Concluding, it was mentioned that for remote and cross-platform

data access, a RESTful-service-generating mechanism was integrated, to provide a platform-independent HTTP

interface. Furthermore, the authors of  reported that in large-scale manufacturing systems, tens of thousands of

data streams flow into the storage at various rates. For that reason, there is a need for improving the bottlenecks

that cause the data to arrive irregularly. The authors mentioned Blueflood as a solution that attempts to achieve

high scalability. Blueflood is a combination of Cassandra, which handles data storage, and Elasticsearch, which

handles indexing. A similar alternative to Blueflood is OpenTSDB, which uses HBase for storage instead of

Cassandra. A summary of the software tools used for data management can be found in Table 1.

The authors of  separated the requirement and solution components that are assigned to the data storage

processes. In , it was suggested that due to comprehensive process transparency, structured, semi-structured,

and unstructured data should be stored and made available for application-specific processing. Furthermore, in ,

operational data storage and a long data storage system were proposed. The first one requires an edge device

unit, which must be able to store and manage real-time data. For operational data storage, the edge devices need

to store data efficiently and reliably. For that reason, SQL was recommended. The preferred Relational Database

Management Systems (RDBMSs) are MySQL and PostgreSQL. Concerning long-term data storage, a Big

Database system is required. Consequently, NoSQL databases provide the best storage solutions as they are able

to efficiently store large volumes of unstructured datasets, compared to relational databases .

A focus on data storage issues and recommendations for a new solution to organise and manage data was given

by . In particular, the cloud storage system they presented uses a Document-Oriented Storage System (DO-SS)

for the storage of all the information derived from the monitoring systems. The integration between the data

collection and storage subsystem occurs with the help of a software module (parser), so that the data can be

converted before being stored in MongoDB. The authors also implemented an Object-Oriented Storage System

(OO-SS), a widely used object storage system. The main benefit over other solutions, is that the data are protected
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by being stored as multiple copies, so in case a node fails, there is another one active where the data are stored.

This design makes the OO-SS ideal when there is a need for performance and scalability.

In , a hybrid framework was conceptualised for an industrial platform that ensures efficient and accurate

communication, concerning data transfer among software applications and devices. The framework was

characterised as hybrid, because it contains two different technologies for data storage and exploits the best

features from each of them. In the proposed framework, structured data are stored in relational database systems,

while sensorial data, which most of the time tend to be unstructured, are stored in NoSQL databases. The real-time

sensor data are published to an MQTT broker that is suitable to be used to connect with remote locations, and the

Raw Data Handler subscribes to MQTT and acquires the generated data. Later, the data are carried to the

sensorial repository where they are indexed and can easily be filtered and accessed by timestamps. In general, the

authors proposed a hybrid framework that is capable of shop floor data collection and application in industrial

environments.

A scalable data storage framework for smart manufacturing was introduced by . In more detail, it is a Software-

Defined Hybrid Cloud (SDHC) for saving the equipment-generated data. The main challenge the authors faced was

the different data types and formats. With the use of software-defined technology, control data and manufacturing

data were separated. The manufacturing data derived from the sensors and controllers can be saved in a key-

value database only if the data save request is allowed. Lastly, two improvements were proposed, the first one to

deal with the data saving efficiency, which will improve the response time, and the second one with the data-save

permission, which will improve the system’s robustness. A software architecture was designed by . The

framework is highly scalable, so a fleet of IoT boards and sensors can be easily configurable. For data collection,

an Arancino board was used that was provided with an AI module that can manage on-board fault prediction.

InfluxDB was the database that was selected as it is non-relational and is suitable for industrial scenarios where

sensors send data at different rates.

Table 1. Applications of software tools for data management.
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Software
Tool Application Reference

Apache
Hadoop

Hadoop is a framework that allows for the distributed processing of large datasets
across clusters of computers using simple programming models. It has been used for
different kinds of applications such as frameworks that can optimise and organise the
way bit data can be searched and accessed. There are also applications regarding
storing data derived from sensors that monitor the environmental air pollution. Lastly,
tuning systems have been designed to improve the performance of Hadoop and
MapReduce.

Apache
Storm

One of the most capable software solutions for Big Data is Apache Storm. Several
applications exist that employ it. Some of them use it as a data streaming and real-
time processing platform, while others create frameworks for dynamically scaling for
the analysis of streaming data. Finally, there are multisensor data fusion frameworks
that employ Apache Storm due to its high reliability and good processing mode.

[39][40][41]

[42][43][44]



Data Acquisition and Storage for Smart Manufacturing | Encyclopedia.pub

https://encyclopedia.pub/entry/20363 7/13

3. Communication Protocols

The smart manufacturing sector benefits from data fusion systems. Next, the required underlying communication

technologies enabling the fusion systems are presented. These are related to the IoT and the corresponding

protocols. Specifically, networking concepts that are based on software are incorporated into the lower

communication layers. Furthermore, adaptivity offers advanced performance since the nature of modern

networking systems is dynamic.

Software-Defined Networking (SDN) is the main conceptual networking model  under modern IoT fusion

environments. It brings the programmable networking logic into the lower architectural layers. This process allows

better control and management of networking data flows in a transparent way from the higher-layer networking

applications. It is a centralised architecture that defines a stable ground to be used for building networking

applications. An open implementation of the SDN networking concept is the OpenFlow protocol , which is widely

adopted. A networking foundation is currently maintaining the specification. The whole concept relies on central

computing logic, represented by the SDN controller, controlling data flows between core networking components

such as switches (i.e., the Southbound API). Fusion techniques over IoT environments are facilitated with the

exploitation of the SDN concept.

Achieving high-speed transmissions in IoT environments requires efficient and dynamic channel assignment.

Conventional fixed assignment techniques are not adequate for modern environments, in which, due to their

dynamic nature, requirements must constantly adapt to the runtime conditions. The IoT over SDN, when combined

with deep learning techniques, improves transmission quality. Therefore, a traffic load prediction algorithm that is

based on deep learning  has been proposed, forecasting network traffic and congestion. Next, a deep-learning-

based algorithm that assigns channels has been introduced. Its main role relates to link channel allocation using

intelligence in the SDN-IoT network environment.

Since communication between smart devices in the IoT manufacturing sector can be peculiar, event-based data

fusion for communication is needed . This is a message exchange system between participating devices that

Software
Tool Application Reference

Apache
Flume

Flume is a distributed, reliable, and available system for efficiently collecting,
aggregating, and moving large amounts of event data. It has been used for various
kinds of applications such as healthcare and manufacturing. Frameworks have been
designed so that the computational scalability of sensor network data can be achieved.

Apache
Spark

The aim of Spark is to make data analytics programs run faster by offering a general
execution model that optimises arbitrary operator graphs and supports in-memory
computing. Most applications use it for sensor analytics. It has been deployed on both
industrial and non-industrial applications and can be integrated into pre-existing
frameworks.

Apache
Kafka

Kafka is well suited for the situations where users need to process real-time data and
analyse them. There are papers that focused on learning how to reliably transfer data
and studied its application in collaboration with other software solutions.
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initiates when events occur. Fusion is required since different devices generate heterogeneous notifications, along

with data source trust issues that may arise. The contribution of this work consisted of an event-based protocol

covering the communication issues of resource-limited sensors and heterogeneous data sources, and it considered

the trust degree of the fused data.

There is a vast spectrum of IoT applications that require security and privacy for realistic deployment in the modern

era. Trust and data integrity are prerequisites in the IoT ecosystem, otherwise applications will lose high demand

and also their potential. In the current case of cellular and sensor networks, special security challenges emerge

and correlate with authentication issues, privacy, management, and information storage . Programmable Logic

Controllers (PLCs) are an integral part of the industrial control systems . Communication issues between PLCs

and the engineering stations or field devices concerning security must be confronted. Modern database systems

use communication systems to deploy as cloud-based solutions . Different DBs support various security

technologies, though most non-relational solutions overlook modern Big Data applications.

Communication requires a credible authentication model, which guarantees data integrity and secrecy. For that

purpose, an IoT node-roaming authentication protocol was introduced . A heterogeneous fusion mechanism

comprises the protocol’s functionality. Every roaming device communicates with a server, which provides

authentication functionality. This process renders attacking attempts from external malicious nodes difficult.

In a smart manufacturing environment, multiple protocols are required for transmitting data efficiently. SDN forms

the basis for a heterogeneous network architecture  for forwarding multisource manufacturing data and, at the

same time, utilising network resources optimally. The core algorithm of the proposed protocol is based on cross-

network fusion and scheduling. It was shown that the efficiency was improved for the fusion processes, especially

for intelligent manufacturing equipment.
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