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The stability of copper-based catalysts is an important property that affects the catalytic efficiency, which determines the

service life of the catalytic base in the methanol steam reforming (MSR) reaction, and plays an important role in the

sustainable production of hydrogen.
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1. Introduction

With the booming economy, energy consumption and harmful gas emissions have increased sharply , and the

decline of fossil fuels has become a major obstacle to sustainable development. With the needs of global sustainable

development, we urgently need some new fuels. Hydrogen is a well-known clean energy carrier, and fuel cells can convert

the chemical energy in fuel hydrogen and oxidant oxygen into electricity (sustainable energy).Hydrogen can come from

many sources , for example, photolysis of water for hydrogen production , traditional fossil fuel hydrogen

production , biomass hydrogen production , and hydrogen production from water electrolysis . In recent

years, more and more studies have been conducted on methanol steam reforming. Methanol reforming produces

hydrogen with low CO selectivity and high hydrogen selectivity, and has little effect on the electrode toxicity of proton

exchange membrane fuel cells . Moreover, methanol steam reforming does not require the vaporization step in

hydrogen production, which can bring good economic benefits . Liquid methanol (CH OH) is a perfect hydrogen

carrier that is more facile to transport than hydrogen gas . There are many ways to produce methanol, such as the

synthesis gas to methanol and the direct oxidation of methane to methanol . However, many scientists have called for

“green methanol” from renewable hydrogen and CO  hydrogenation . There are also many ways to synthesize

methanol from renewable energy such as biomass, wind power, and solar energy. For example, many works have

reported methanol synthesis directly from photo/electronic catalytic CO  reduction in water . It is very useful for the

industry and our society to produce methanol from renewable energy using CO  as a raw material. In addition, when the

captured CO  source is biomass, it is called bio-methanol . This means that methanol could also be obtained through

thermochemical and biochemical conversion of biomass gasification and electrolysis . Gautam et al. have provided an

excellent review on the current trends and future perspective of bio-methanol as a renewable fuel from waste biomass .

Bio-fuels (e.g., bio-methanol, bio-ethanol, biodiesel) would be a significant alternative fuel for the future. Compared with

other fossil fuels, methanol with a low carbon atom and high hydrogen-to-carbon ratio can significantly reduce the

occurrence of side reactions .

There are four typical ways to produce hydrogen from methanol: methanol decomposition (MD) , partial oxidation

of methanol (POM) , steam reforming of methanol (SRM) , and oxidative steam reforming of methanol

(OSRM) . Methanol reforming can produce a large amount of hydrogen, which is one of the important reasons

why it is widely studied by researchers . SRM also contains two side reactions, which are methanol decomposition

and water gas shift reactions .

The catalyst is the key factor that affects the hydrogen production efficiency of methanol reforming. The deactivation of the

catalyst can easily reduce the yield of hydrogen and the lifetime of the catalyst. Noble metals have high catalytic activity

and stability, but the cost is too high, limiting their large-scale application . Copper-based catalysts have low cost

and excellent catalytic activity, and they are good candidates for methanol reforming for hydrogen production process

. For example, CuO-ZnO-Al O  catalysts are often used in methanol reforming to produce hydrogen, and their

performance is also very good . Bagherzadeh et al. investigated the effect of adding ZrO -CeO  to CuO-ZnO-Al O

catalysts, and found that the selectivity for H  was high and the selectivity for CO was low . Mohtashami et al.

introduced ZrO  to a Cu/ZnO catalyst and studied its MSR (Methanol Steam Reforming) performance, and the methanol

conversion reached up to 97.8% with the selectivity for H  of 99% . However, Cu-based catalysts suffer thermal

instabilities , such as spontaneous combustion, sintering, and deactivation . The reports have shown that when
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the temperature is higher than 300 °C, the copper particles in the copper-based catalyst are easy to sinter . There is

also a by-product methyl formate produced in methanol reforming that promotes catalyst deactivation through

pyrolysis . Thus, how to improve their stability is an important and meaningful topic.

In addition to the factors of the copper-based catalyst itself, the methanol reforming hydrogen production reactor also has

a great influence on the stability of the catalyst, for example, methanol steam reforming is a strong endothermic reaction,

which requires the reactor temperature not to be too high . Moreover, the production of the reactor is relatively

complicated, and requires relatively complex technology and high cost. With the development of technology, the design of

the reactor can become simpler and simpler, and the more likely it is that a reactor that makes the catalyst more stable

can be created. It has been reported in the literature that the reactors used for hydrogen production from methanol

reforming are mainly packed bed reactors . However, this kind of reactor requires high temperature, which is its

disadvantage, so other reactors have been studied in recent years, such as membrane reactors  and microporous

reactors . Moreover, in recent years, many researchers have made great efforts in the design of methanol reforming

reactors and have achieved good results; for example, Mironova et al. designed a flow reactor with a Pd-Cu membrane in

which methanol steam reforming can achieve a high hydrogen yield compared to conventional reactors , while Wang et

al. designed a rib-type microreactor for methanol steam reforming and found that the conversion rate of methanol reached

99.4% [59]. With the development of science and technology, 3D printing technology is also used to design catalysts ;

this technology can design a reactor suitable for catalysts. Moreover, other technologies, such as plasma-assisted

reactors and solar-powered MSR reactors  or the novel solar triple-line photothermal chemical energy and heat

storage medium reactor proposed by Du et al., can effectively prevent the deactivation of the catalyst and achieve the

stability of the reaction .

Figure 1. The reaction process of methanol reforming for hydrogen production.

2. Research Progress on Avoiding Deactivation of Copper-Based
Catalysts

Improving the stability of copper-based catalysts is of great significance for improving the efficiency of methanol reforming

to hydrogen production. However, there are also many difficulties. In the future, researchers should make great efforts in

this regard.

The preparation method affects the copper dispersion, microstructural properties, and surface areas of copper-based

catalysts, which determine the catalytic performance, especially the catalytic stability. Herein, we selected the preparation

of Cu-ZnO series catalysts as examples. According to the previous literature, there is an interaction between Cu and

Zn , and this interaction is helpful to enhance the catalyst activity. In addition, the preparation method has a great

influence on the metal–support interaction. Therefore, optimizing the preparation method is of great significance for the

improvement of catalyst activity. There are several traditional preparation methods for the synthesis of methanol reforming

catalysts, such as the hydrothermal method, dipping method, co-precipitation method, and sol-gel method . Sanches et

al. prepared a Cu/ZnO catalyst by the co-precipitation method , and Liao et al. synthesized a CuO/ZnO/CeO /ZrO

catalyst by the one-step hydrothermal method . A series of CuZn/MCM-41 catalysts were prepared by the co-

impregnation method  and achieved good results. After the catalyst was operated for 5 h, the methanol conversion rate
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was stable at 88%, and the H  selectivity was 91%. The effects of synthesis methods on the catalyst were also compared.

By comparing the performance of catalysts synthesized by one-pot hydrothermal synthesis, co-impregnation, continuous

impregnation, and copper impregnation in MSR, it was found that the catalyst synthesized by the co-impregnation method

had the best activity.

In order to improve catalyst stability and activity, researchers have added various promoters. For instance, Pu et al. added

Sc O  to Cu/ZnO and found that it has good stability and activity in methanol reforming for hydrogen production , in

which Sc  increases the copper dispersion and enhances the intermetallic interaction. A similar effect makes it suitable to

add Mg to Cu/ZnO/Al O , which enhances the catalyst activity by enhancing the Cu-ZnO interaction and increasing the

Cu dispersion . The addition of promoters changes the structural properties of the catalyst. For example, Sanches et al.

 added ZrO  to Cu/ZnO, and found that ZrO  clusters in the catalyst could reduce the formation of CO. The addition of

ZrO  induces microstrains in the Cu and ZnO lattices and promotes the formation of CuO, and CuO is easily reduced.

Mohtashami et al. found that ZrO  can reduce CuO size and increase CuO dispersion . Some researchers have also

worked to prevent catalyst sintering. The addition of ZrO  to Cu/ZnO by Huang et al. improved catalyst durability .

Different promoters have different effects on the same catalyst. To reduce carbon deposition, Lorenzut et al. introduced Ni

and Co into Cu/ZnO/Al O , and the carbon deposition was also improved due to the alloying of Ni with Cu . For the

traditional Cu/ZnO catalyst, the biggest problem is its durability. ZrO  is a good promoter and we need to find more useful

promoters.
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