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A smart streetlight (SSL) is defined as a LED-equipped lighting system that can monitor and control lighting based

on environmental conditions. It is part of a network-based system, capable of sending and receiving data, and

features sensors and actuators for various functions like traffic and light sensing, environmental monitoring, and

more.
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1. Introduction

Due to the ongoing trend of urbanization, around 4.4 billion people inhabit cities globally . Although cities serve as

hubs of innovation and economic advancement, they are also accountable for nearly 70% of the world’s energy

usage and make a substantial contribution to global carbon emissions , leading to increased energy consumption

and air pollution. Streetlights, a cornerstone of urban infrastructure, play a vital role in large cities, roads, villages,

and various open spaces. Properly illuminated streets and public spaces can create a safer and more inviting

environment for people to engage in various nighttime activities. They also enhance the feeling of safety and help

reduce accidents, in contrast to areas lacking proper illumination .

By the end of the present decade, reports state that 360 million streetlights will be installed globally. At present,

these lighting systems contribute to 15% of the world’s energy demand . For example, in the United States,

streetlights alone consume 14 TWh of energy annually . Furthermore, to ensure the effective functioning of these

systems, municipalities allocate over 40% of their budgets to public lighting maintenance. This substantial energy

consumption of streetlights can be attributed to several factors. These include the use of inefficient high-intensity

discharge (HID) lamps instead of newer generation of LED lamps, unmetered power consumption and power leaks

where municipalities are charged a fixed energy fee, and inefficient light control that keeps lamps fully on even

when there is no demand for light. Thus, the need for smart and sustainable management of this resource is clear.

A smart streetlight (SSL) is defined as a LED-equipped lighting system that can monitor and control lighting based

on environmental conditions . It is part of a network-based system, capable of sending and receiving data , and

features sensors and actuators for various functions like traffic and light sensing, environmental monitoring, and

more. These lights communicate through advanced systems and share data with a central system to regulate

urban activities .
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2. Hardware Related Components to Streetlamps

A streetlamp luminaire is mainly composed of a lamp, a light controller, sensors, a communication module, and a

power supply. It may also include devices such as charging ports, WiFi hotspot and other auxiliary devices.

The light controller (LC), acts as the central processing unit of a SL, endowed with varying computing capabilities.

It processes and transmits data from integrated IoT sensors, receives commands from a central control, manages

the lamp’s brightness by regulating power supply, and continuously monitors the luminaire’s condition and electrical

parameters . The LC communicates with the power supply either through an analogue 0–10V signal or through

Digital Addressable Lighting Interface (DALI).

The communication module part facilitates a bidirectional exchange of information among SLs and between SLs

and the control center. Communication networks for this purpose can be broadly classified into two main

categories, namely wireless and wired.

Wireless communication in SLs often uses Wireless Sensor Networks (WSNs) to facilitate data transmission and

reception. Various communication protocols such as Zigbee, LoRa, Wi-Fi, or GPRS can be employed within WSNs

to ensure communication between the lamps and the control center, each offering different ranges, data rates, and

energy consumption characteristics. Wired communication networks use physical cables to connect between SLs

and the control center. Common wired technologies include Power Line Communication (PLC) and Ethernet, which

facilitate the transmission of data over electrical cables or dedicated data cables, respectively.

2.1. Used Lamps Technologies in Streetlights

Lamps can be broadly categorized into high-intensity discharge, and solid-state light lamps.

HID lamps generally require a warm-up time to achieve nominal temperature and maintain the discharge arc.

Additionally, when switched off, a cool-down time referred to as re-strike time is necessary before the lamps can be

turned on again. This re-strike time helps prevent damage to the lamp and ensures that it operates correctly.

Furthermore, these lamps initially operate at full power and can only be dimmed after a time delay varying with

lamp type. There exist various types of HID lamps either operating at high or low pressure. Low-pressure sodium

(LPS), and high-pressure mercury (HPM) lamps were initially used for road and residential lighting, respectively,

due to their distinct light colors . Fluorescent lamps, preferred for moderate illumination, and Metal Halide (MH)

lamps, known for excellent color rendering, were also introduced. High-pressure sodium (HPS) lamps, are

prevalent in road lighting due to their high luminous output, efficacy, and longevity . However, they have a low

color rendering index and still require 3 to 4 min of warm-up time to reach full output . For dimming, they can

be reduced to 50% of their light output, commonly achieved by lowering the voltage amplitude or adjusting the

phase angle, but certain thresholds must be maintained to ensure proper function .

LEDs are a form of solid-state lighting where light is emitted as electrons transition between energy levels within a

semiconductor under an applied voltage. These LEDs are versatile, can offer very high efficacy, do not require any
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warm-up or cool-down time, and have a lifespan of up to 100,000 h. They allow for extensive customization in

terms of shape, correlated color temperature (CCT), and spectral power distribution. Despite their higher initial

costs and sensitivity to heat, LEDs are renowned for their energy efficiency, high Color Rendering Index (CRI), and

adaptability, making them a prevalent choice in modern lighting solutions .

2.2. Sensor Overview

The effective control of modern SLs involves a wide range of sensors. These include light sensors, traffic detection

sensors, electrical metering, and sensors that can assess various environmental parameters.

Traffic sensors can be categorized into intrusive and non-intrusive types. These sensors allow traffic count,

speed measurement, and even traffic classification. Non-intrusive sensors such as active IR emit infrared

beams to monitor traffic, counting each interruption of the beam as a vehicle passes. Light-dependent resistors

(LDRs), photodiodes and passive infrared (PIR) sensors detect traffic by responding to changes in light intensity

or infrared radiation. Doppler-based sensors, like radar, ultrasonic, or LiDAR, can detect vehicles and determine

their speeds. Video sensors on the other hand can cover a wide area to detect, count and classify road users

through image processing. Intrusive sensors include inductive loops, and piezoelectric sensors which can

identify and differentiate various road users based on the applied pressure.

The light sensor in a SSL system measures ambient light, assesses SL degradation, and can serve as closed-

loop feedback to the controller for system optimization. Cost-effective light sensors like LDRs, photodiodes, and

phototransistors detect light changes and measure illuminance, which represents the amount of light falling on a

surface area. Lux meters are specialized instruments for precise illuminance measurements. Some applications

use photo-voltaic (PV) panels, but they are less common due to their lower resolution, and response time

compared to photodiodes. Cameras, particularly CCD cameras due to their high sensitivity, can extract various

types of information including luminance, representing the reflected light intensity as perceived by the human

eye. Some applications even utilize low-resolution cameras as lux meters, employing a series of image

processing and calibration techniques .

Power metering sensors in SSL control, such as current, voltage, wattmeters and so on, enable fault detection

like short circuits or voltage fluctuations. Regular assessment of these power parameters ensures accurate

billing for energy usage and system reliability.

Environmental sensors equipped on SLs enable adaptive lighting control in response to various weather

conditions and can also serve as urban weather and pollution monitors. These sensors include devices for

measuring temperature, rain, humidity, and air quality, such as carbon monoxide (CO) and nitrogen monoxide

detectors, among others.

3. Lighting Profiles
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Lighting profiles or light schemes refer to various patterns and dimming levels, viewed from a spatial-temporal

perspective. SLs can be individually controlled—turned on, dimmed, or turned off—regardless of the state of other

lamps, or managed as a group. These control patterns take into account several lighting parameters, including

usefulness to road users, application type, lighting regulations, luminaire types, traffic flow, weather conditions, and

others.

Conventional scheme: this is the conventional method where SLs are switched fully ON during sunset, and

switched OFF during sunrise, usually by the means of an astronomical clock. The lighting level stays at its

maximum during the whole night.

Part night: in this lighting category, streetlights are programmed to operate at predefined lighting levels during

designated periods of the night. The lamps can be fully turned ON or OFF , or set to a specific lighting level

as depicted in Figure 1c. This schedule is often determined by either prevailing traffic conditions or the unique

requirements of certain locations or applications. For example, in rural areas, parks, or highways with low traffic

volume during the night, a modified schedule may be implemented. Another example is how UK city councils

sometimes adopt part-night lighting systems, particularly in residential areas, to optimize energy usage and

meet local needs .

Two steps control: in this category, the lighting level is altered between two predetermined states: either ON and

OFF, or between a high and low brightness level as shown in Figure 2a. The ON/OFF method is suitable for

non-dimmable lamps, provided that the warm-up time is respected . While this approach offers the most

significant energy savings by eliminating electricity consumption, it also negates the primary purpose of SLs:

enhancing safety and enabling nocturnal activities. Additionally, the abrupt transition from ON to OFF may look

unusual to road users. In contrast, maintaining a low light level ensures the uninterrupted operation of various

road services at night, such as surveillance cameras, while preserving a city’s aesthetic appeal. This two-state

control system has several benefits, including less complex control mechanisms and no significant reduction in

lamp lifespan, as only two lighting levels are used .

Class or step dimming: this scheme adjusts light intensity based on predefined steps or road lighting classes. In

the literature, authors may describe light levels in terms of brightness or dimming percentages Figure 2b.

These percentages can either correspond to arbitrarily predefined steps or to specific, standardized lighting

classes. These classes are determined based on factors such as road type, speed limit, and surrounding area.

Three common lighting classes are M for motorists, P for pedestrians, and C for conflict areas. Before the

introduction of the CIE 115:2010 standard , these classes were determined subjectively. However, CIE

115:2010 revolutionized the calculation of lighting classes by introducing adaptive lighting and an arithmetic

approach for quantifying lighting parameters. Subsequent standards, such as CEN/TR 13201-1:2014 , have

adopted the CIE 115:2010 framework to simplify lighting classes and improve efficiency. It is worth noting that

changes in light levels typically occur within sub-classes rather than between different classes. For instance, a

change from subclass M5 to M6 could occur if a time-dependent lighting parameter changes.
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Freely controlled: several works in the literature employ imprecise dimming levels to adjust the luminosity of

SLs, without considering road type or regulatory guidelines. This approach allows for stepless lighting

adjustments, usually calculated based on a range of lighting parameters. While energy-efficient, the practical

utility of this scheme is often questioned due to its imprecise lower bound for illumination. In certain scenarios,

the dimming level may be so low that the lamp appears nonfunctional. However, recent developments have

addressed this issue. For example, a study by Neveen et al.  introduced a continuous lighting range that

spans from the lowest to the highest sub-lighting class categories. This modified algorithm outputs lighting class

values on a continuous scale, rather than in discrete steps. As a result, it ensures adequate illumination by

adhering to the minimum levels prescribed by regulations.

Correlated Color Temperature (CCT) control: this control method refers to the ability to adjust the color

appearance of a light source, measured in Kelvins (K), to suit specific lighting conditions. The CCT of a light

source not only influences visual comfort and color perception but also can affect human circadian rhythms.

Lower CCT values, typically between 3000 K and 4000 K, are recommended for residential areas as they

create a warm atmosphere and improve visibility in foggy conditions as shown in Figure 1d. Studies suggest

that lower CCTs offer longer visibility distances , and better dark adaptation , and are less likely to

contribute to light pollution. However, they may result in a lower Color Rendering Index (CRI). Conversely,

higher CCT values, ranging from 5000 K to 6000 K, are suggested for roadways and outdoor areas as they

enhance visibility and safety , especially in clear conditions, and can improve facial recognition and facilitate

nighttime activities . Despite these benefits, high CCT values can increase glare and light pollution. This

method of control is still under development and research to optimize both performance and energy efficiency in

lighting systems.

Group or individual control: this method offers two approaches for adjusting the luminosity of SLs. Individual

control allows for the adjustment of each lamp’s brightness irrespective of the state of other lamps. This scheme

is particularly useful for spatial alterations of ON and OFF states, as demonstrated by Chung et al.  for

example, every second or third lamp in a sequence may be turned OFF. While energy-efficient to some extent,

this approach can result in uneven light distribution, causing dark patches on the road. Conversely, group

control involves adjusting a set of lamps simultaneously, either uniformly or with varying light levels. This

ensures a more consistent light distribution or smoother light transitions across a specific section of the

roadway. A ‘section’ refers to a portion of a roadway with similar characteristics, such as road width and the

number of lanes, as defined in EN 13201 . Separate lane control is a form of group control, as it involves

adjusting lamps in each lane based on its distinct characteristics.

Zoning (surrounding dimming profile): given that the primary users of roads are moving objects, namely

pedestrians and motorists, several experiments have employed a moving light system that adapts to the

pathway of the road user.

For pedestrians, an effective SL enhances safety, aids in obstacle avoidance, and facilitates facial recognition. As

reported by Haans et al. , pedestrians feel safer with a descending light distribution. In this scheme, the nearest

SL to the pedestrian emits the brightest light, while those farther away gradually dim Figure 1b. The number of
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functioning SLs is subject to optimization, influenced by factors such as the distance between SLs and the

preferred illumination radius for navigation and identification.

From a motorist’s perspective, the primary concern is detecting hazards beyond the illumination provided by

headlights. Lau et al. . suggest that higher average luminance and uniformity improve motorists’ ability to detect

danger. Therefore, a fading dimming profile is ineffective for motorists, and rear lamps are also irrelevant in this

context. Instead, a flat lighting scheme, where distant SLs provide equal brightness to the nearest ones, is applied

as depicted in Figure 1a. The number of functioning SLs, depends primarily on the motorist’s speed, and distance

between each SL. An added benefit of this scheme is its ability to slow down speeding vehicles . However, this

approach requires precise speed measurement and accurate object detection. Further discussions on this topic

can be found in the computational section.

Figure 1. Different light schemes: (a) zoning light scheme for cars; (b) zoning light scheme for pedestrians; (c)

part-night (d) correlated color temperature control.
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Figure 2. Different light schemes: (a) two-step control; (b) step dimming; (c) freely controlled.

4. Static Control Methods

In a static control system, lights are programmed to maintain a constant brightness level at specified times and

locations, using timetables, and regardless of fluctuations in weather, traffic, or other environmental conditions. In

the literature, this type of control is commonly referred to as pre-defined regulation, or time-based traffic control 

. The brightness levels are assigned based on an offline assessment of the average traffic and weather patterns

over time and space .

This control approach, mainly used with HID lamps, is largely based on the part-night scheme. While also, due to

limitations like warm-up and cool-down times, several control options are excluded. Chung et al. , operated HID

lamps at full brightness for the first twenty minutes to reach steady-state temperature, before dimming can be

applied. In a related study , the authors claimed that using 70% of the lamps’ nominal output during warm-up is

sufficient to maintain arc stability, then other dimming levels are enabled. By adopting these strategies, a reliable

and stable operation is ensured, while minimizing disruptions to the grid caused by excessive demand for

electricity.

Typically, in a static control method, two light levels are used. The first one involves a higher lighting level activated

during the first half of the night. The second one is a lower light level and is mostly activated during the other half.

The specific time to switch between the two levels depends on the observed traffic in the controlled area .

As user activity decreases during the night, further downgrading steps are added . Then, in the early morning

light level is increased again . The employed sensors are not used for the control itself, but mainly to

monitor electric consumption and the environment, aiding municipalities in reducing electricity bills and facilitating

the switch to energy-efficient LED lamps .

As discussed before, LED lamps consume less energy than HID lamps. Even non-regulated LED lamps remain

more energy-efficient compared to regulated HID lamps . A slight difference may appear during winter, where

non-regulated LED lamps consume more energy due to longer operating times . Other trends use the mesopic

vision in conjunction with LED lamps. Mesopic vision refers to the intermediate lighting levels between daylight and

complete darkness, activating both the rods and cones in the eye. It enables seeing in low-light conditions,

blending luminances from bright sources like car headlights and dim areas like distant roads . According to MB

Kostic et al. , LED lamps provide lower photopic luminance than HPS lamps, when their mesopic luminances

are equal. The conversion to the photopic range is necessary, because road lighting regulations use photopic

vision properties for design. For this purpose, the CIE standard defines a luminous efficiency function to convert

between photopic and mesopic luminances. Studies suggest that aligning road lighting standards with mesopic

vision, especially when using LED lamps, results in enhanced energy efficiency . However, the effectiveness

of street lighting while using mesopic vision is still under investigation, as some reports  state that respondents

prefer LED lamps in a photopic regime.
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It is also worth noting that few references use static control in conjunction with stand-alone SLs, as energy

efficiency in this case is marginal due to driver losses , and it may not meet energy needs during the winter .

The energy efficiency of static control depends on the applied light scheme. It was shown that the largest energy

savings were reported by adopting a part-time ON/OFF approach, particularly in zones with low frequencies of

users such as parks or university campuses . Overall, this control strategy has several advantages, including

low implementation costs as no permanent sensor equipment needs to be installed on roads. In comparison to

adaptive control, the control algorithm is less complex. Among the disadvantages, this method is not responsive to

weather changes or traffic jams, plus the security and the effectiveness of other security measures can drop in low

light levels. For example, with CCTV surveillance cameras , there can also be a risk of providing insufficient light

if some unexpected traffic variation occurs . Table 1 presents an overview of selected papers adopting a static

control scheme.

Table 1. Related works on control methods employing a static control strategy.

[37] [44]

[33][34]

[19]

[45]

PaperEnergy
Source

Used
Sensors

Used
Lamps

System
Implementation Dimming Profile Energy Savings

Grid None LED
Real
implementation

Part night + step
dimming

15% energy
reduction when
using mesopic
vision and class
dimming

Solar
with
PV

Electrical
metering

LED
Real
implementation in
a refugee camp

Part night Unspecified

Grid None HID

Real
implementation in
Cordoba, south
Spain

Part night + step
dimming

From 30% to 40%

Grid None HPS
Installed on a
University campus

Part night + two
steps

36% reduction

Grid
Acoustic;
presence;
air quality

LED with
different
colors

Simulations Part night 15%

Grid None LED Simulations
Part night + step
dimming

67%

Grid Light
HPS and
LED

Installed on a
University campus

Part night + two
steps + step
dimming

First scenario: 50%;
second scenario:
30%; third scenario:
40%; fourth
scenario: 60%
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5. Dynamic Control

5.1. Simple Rule-Based Control

Rule-based methods manage SLs using simplistic procedures and minimal computing, utilizing sensor readings

and basic computing units . For instance, motion sensors adjust SL brightness based on detected

activity, optimizing illumination levels and allowing for the complete switch-off of lamps, particularly battery-powered

ones.

Optimizing the ON/OFF timing of lamps is essential. Astronomical clocks, which operate based on predetermined

sunrise and sunset times, do not account for ambient light variations due to weather. In contrast, light sensors and

solar panels actively monitor ambient light, enabling more precise control over lamp operations . This

approach saves more energy and reduces operating times, especially in winter. Other methods consider factors

such as lighting class and visibility, or maintain consistent illumination levels during specific times .

PaperEnergy
Source

Used
Sensors

Used
Lamps

System
Implementation Dimming Profile Energy Savings

Grid None
LED and
HPS

Simulations

Part night on HPS
lamps
conventional
scheme on LED
lamps

21% energy saving
with part-night
(HPS)44% energy
savings using LED

Grid None
LED and
Induction
lamps

Pilot project in
Jakarta

Part night

38% reduction just
by replacing
lamps56% by using
static control

Grid None LED
Pilot project in
Rome, Italy

Part night + step
dimming

37% reduction

Grid None
LED and
HPS

Case study
Part night + step
dimming

46% reduction with
part-time HPS 66%
reduction with part-
time LED

Grid None HID
Real
Implementation in
Heshan city, china

Part night + step
dimming

27%

Grid None
HPS and
LED

Pilot site on a
university campus

Conventional
scheme + two
steps

40%

Grid None
HPS and
LED and
MH

Simulations
Conventional
scheme

62% savings using
LED against HPS
and MH

Grid
Power
metering

HPS

Real
implementation in
a university in
Turkey

Step dimming +
group controlled

24.1 yearly energy
savings
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The number of installed sensors on SLs depends on the application, site type, and communication technology.

Sensors can be selectively placed on strategic lamps or installed on each lamp. The selective placement follows a

hierarchical approach where a sensor-equipped head lamp controls a group, adjusting brightness based on road

user presence and reverting to minimum brightness or turning off when the user leaves. This method involves

simplistic control procedures, where the duration of time for road users to leave the corresponding section is either

estimated or based on simple calculations, as illustrated in studies like . This approach is cost-effective and

suitable for sites with predictable road user trajectories . However, it relies heavily on sensor accuracy,

necessitating careful sensor selection or combined sensor methods to minimize detection errors, for example the

use of Doppler, microwave, a combination PIR and light sensors, or cameras . Furthermore, this

method may compromise safety and in some cases consume more energy if the number of lamps in a group is not

optimized.

The method where all lamps are equipped with sensors allows for either a hierarchical or decentralized method of

control. This approach enables the application of more light schemes. For instance, vehicles can be detected at

each SL, allowing light intensity to increase in accordance with the vehicle’s journey . This creates what is

referred to as a zoning light scheme, giving a perception of continuous lighting. In this scheme, brightness adjusts

based on user presence, turning lamps ON as users approach and dimming them afterwards . The

optimization of this light scheme can be furthered by measuring speed, such as calculating the average speed

between two IR sensors, allowing for the categorization of road users and the application of suitable zoning light

profiles .

Other studies have explored a combination of static and dynamic control methods. For example, some applied full

rated power during the first half of the night, transitioning to detection-enabled control later on, adjusting light levels

based on detection and rain . Another approach set predefined light levels for specific times throughout the

night, using motion sensors to trigger full brightness when necessary, ensuring a blend of static and adaptive

control for enhanced safety . Economic analysis demonstrated low payback periods and a promising internal

return rate . However, in terms of energy consumption, some cases exceeded the static control scheme due to

maintaining high light levels, especially in busy roads . This highlights the importance of balancing energy

efficiency with safety in SL systems. Table 2 presents an overview of selected papers adopting simplistic rule-

based methods.

Table 2. Related works on control methods employing rule-based methods.

[58]

[49]

[20][58][59][60]

[52]

[59][61][62][63]

[64]

[55][65]

[66]

[67]

[68]

PaperEnergy
Source Used Sensors Used

Lamps
System
Implementation

Dimming
Profile Energy Savings

Grid
LDR; proximity;
ultra sonic

LED
Prototype +
simulations

Group
control + two
steps

Unspecified

Grid PIR; LDR;
current and

LED Small prototype Zoning 43%

[63]

[52]
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PaperEnergy
Source Used Sensors Used

Lamps
System
Implementation

Dimming
Profile Energy Savings

voltage sensors;

Grid
Infrared; light;
electrical
metering

Unspecified

Real
implementation in
Xiasha district,
China

Two steps +
individual
control

Unspecified

Grid
PIR; LDR;
humidity; fire
sensor

LED Simulations
Part night +
step
dimming

20%

Grid

Motion;
illumination;
current sensor;
voltage sensor;
GPS

HPS
Implemented on a
university campus

Part night +
step
dimming +
group
control

13 KWh annual
savings

Solar
PV

PV panel as a
sensor

LED
Simulations +
prototype

Part night +
step
dimming

Unspecified

Grid Motion; LDR LED None
Zoning +
step
dimming

Unspecified

Grid Infrared; LDR LED
Simulation +
Prototypes

Zoning 42%

Grid
Luminosity;
presence
sensors

LED Simulations
Part night +
two levels

Unspecified

Grid Infrared LED
Implementation in
pilot sites

Part night +
step
dimming

70%

Solar
PV

PIR; light
sensor;
electrical
metering

LED and
HPM

Implemented in a
rural area

Two steps +
individual
control

90% against grid
powered HPM

Solar
PV

PIR; light;
electrical
metering

LED
Implemented in a
crossroad in a
rural area

Two steps +
group
control

From 220 KWh to 67
KWh annually

Grid

Camera; air
quality; PIR;
LDR; power
sensor

LED Simulation Two steps Unspecified

[47]
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5.2. Web-Based Control

By leveraging the availability of public data through the use of web APIs in conjunction with installed sensors on

SLs, these systems are capable of gathering comprehensive, real-time information across expansive geographic

areas, surpassing limitations associated using locally installed sensors alone. To address changes in weather

conditions, both Satrya et al. , and Daeley et al. , integrated micro-services into the SL monitoring and control

system to obtain real-time weather data. Leveraging this data, Satrya et al. , proposed the adjustment of LED

lamps from a CCT value of 5000 K to 3000 K during adverse weather conditions. On the other hand, Daeley et al.

, considered both brightness and CCT control in foggy conditions. The transition in CCT for SLs was automated

on the Streetlight Web server side, with a proposal to use two LED arrays, one at 3000 K and another at 5000 K, in

each SL. According to Rami et al. , integrating these two factors could yield additional energy savings. However,

these models did not take into account changes in traffic flow while making brightness adjustments.

Expanding on this concept, the authors of  present an intelligent control framework for smart streetlights based

on weather and traffic density data obtained through APIs, along with demand response signals. The framework

optimizes streetlight usage by dynamically adjusting lights based on demand response signals, considering cloud

cover, visibility, and traffic density. The algorithm is executed twice daily, targeting peak electrical demand periods.

It incorporates additional factors like jam levels, road priorities, and demand response requests. Results

demonstrate successful satisfaction of demand response requirements, contingent on visibility and cloud cover

conditions.

Addressing sensor inaccuracies is crucial to prevent unnecessary energy expenditure or safety risks in SLs

systems. Zhang et al. , tackles this issue by introducing a voting mechanism within a WSN-based SL system.

Within this setup, the decision to either activate or deactivate a cluster of lamps is determined by a lamp leader.

This leader assesses the voting results based on the readings from each SL’s installed light sensor. If the count

exceeds a predefined threshold, the leader issues a command to switch on the lights; if it falls short, a command to

PaperEnergy
Source Used Sensors Used

Lamps
System
Implementation

Dimming
Profile Energy Savings

Grid
Infrared; voltage
sensor

LED Small prototype Two steps
45% on weekdays
and 32% on
weekends

Grid

Camera; rain
sensor; vehicle
counter; power
meters

LED Prototype
Part night +
step
dimming

From 29% to 77%,
depending on the
implemented zone

Grid Motion; light LED None
Part night +
two steps

17% using only light
sensor, 20% with
motion sensor and
up to 33% using
both sensors.

Solar
PV

Motion LED None
Two steps +
group
control

Unspecified

Grid
Brightness;
motion

LED None Two steps None

Grid PIR; light
LED and
HPS

Simulations Zoning
Payback time
estimation

Grid
Microwave
Doppler sensor

HPS
Installed a
prototype on a
university campus

Group
controlled +
two steps

37%
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switch off is sent. This voting strategy ensures control decisions are reached based on the agreement of multiple

sensors. In another study, He Meng et al. , mitigates sensor inaccuracies through multi-sensor information

fusion, using an average value fusion algorithm. This strategy gives equal importance to all sensors, thereby

reducing the effect of individual faulty readings. The unified sensor data informs the control terminal, which

regulates the lighting accordingly. This approach has demonstrated substantial power savings, emphasizing the

effectiveness of techniques designed to counter sensor inaccuracies; other techniques relying on fuzzy logic to

deal with sensor inaccuracies are discussed in another section.

Moving beyond individual sensor inaccuracies, a more complex scenario arises when considering the light at

intersections. These areas demand specific attention due to their critical role in road safety and traffic flow. To

adapt drivers’ vision when approaching a lit intersection, Linhong et al. , proposed using transition zones to

facilitate visual adaptation from dark to light. They introduced an exponential model to assess the pupil’s

contraction phase during light intensity transitions, aiding in determining optimal illumination settings. This

approach allowed for the design of shorter, cost-effective transition zones, varying the number of LED lamps based

on speed limits. While innovative in enhancing drivers’ visual performance, the model’s reliance on speed limits

instead of actual vehicle speeds could impact safety and energy efficiency. Another study, , aimed to optimize

roadway lighting to improve drivers’ recognition distance and response time by dynamically adjusting illumination

based on vehicle speed and real-time data. Using binary linear regression, their method prioritized areas where

pedestrians and cyclists posed significant traffic risks, such as intersections. The study found that increased

illumination improved visual recognition distance and safety at higher vehicle speeds, but it also highlighted a

trade-off with energy efficiency, suggesting a need for a balanced approach in lighting optimization.

5.3. Control Strategies for Building-Adjacent Lamps

A special case emerges when SLs are incorporated into building automation control systems (BACS). These

lamps, often found within gardens, walkways, residential complexes, university campuses, etc., may need to

operate during daylight hours. This typically occurs in shaded areas or during cloudy conditions, where additional

illumination is needed. In these situations, outdoor lighting arrangements need to align with the different efficiency

classes for BACS defined by EN 15232 . The research in Andrzej et al. , proposed functional strategies for

BACS efficiency classes ‘A’ and ‘B’, exploiting various control scenarios and daylight monitoring using a lux sensor.

The efficiency classes comprise advanced control functions, including automated time schedules and individual or

group lamp control, as seen in class B. Moreover, class A integrates even more complex controls, maximizing

daylight usage, notably by using a lux sensor to monitor daylight levels. Various control strategies corresponding to

these classes were tested, focusing on different time schedules and light intensity levels. The tested strategies

showed potential energy savings of up to 45% compared to conventional systems. In another study, Marina et al.

, addressed some gaps within EN 15232 , particularly its omission of outdoor lighting among building services

and its disregard for the latitude of the installation site. To rectify these limitations, they proposed four distinct

controlling scenarios, each aligned with the efficiency classes defined by the standard. In the developed control

scenarios, class A utilizes a predefined control scheme using a timer with an ON/OFF feature tied to illumination

levels, while class B solely employs a predefined control scheme. Results show that class A systems generally
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exhibit substantial energy savings. The efficiency of the lighting system, according to the study, is influenced not

just by the energy consumption of its control system, but also by the latitude of its installation. Other studies

provide valuable insights without explicitly focusing on these efficiency categories. The authors of  developed a

smart lighting system for managing lamps within university campus buildings. Utilizing a central real-time expert

system and microcontrollers, lamps were categorized into groups based on factors like daylight, real-time data, and

campus usage patterns. The system, comprising an inference engine and a knowledge base, used logical rules for

decision-making and included a feature measuring ambient illuminance using PV cells, allowing lamps to activate

outside predefined schedules if necessary. This approach achieved significant energy savings.

5.4. Traffic-Based Control

Simple traffic count

Leveraging traffic data for the control of SLs has emerged as a powerful strategy, as evidenced by various studies

explored in this section. These methodologies span a broad spectrum, ranging from the relatively simple to the

remarkably sophisticated. A basic yet effective approach entails counting vehicles, which can serve as a trigger for

certain control modes. For example, In Jing et al. , two control scenarios were examined, when a single vehicle

is detected, the measured speed is used to sequentially switch ON and OFF the lamps before and after the

vehicle. In the second scenario, when multiple vehicles are counted, lamps are controlled according to the

calculated time interval of the fastest and slowest vehicle in a group of vehicles.

Leveraging regulations that allow for light adjustment based on traffic count, Petritoli et al.  propose a Traffic

Adaptive Installation (TAI) that adjusts lighting based on 15-min traffic intervals, following local regulations. The

system downgrades lighting levels if traffic falls below certain thresholds, using an algorithm that considers past

and current traffic flow. Lighting adjustments are made based on consecutive traffic measurements, ensuring

energy efficiency. The study suggests that TAI is more energy-efficient compared to baseline controls and hints at

further adaptability by considering additional environmental data. The work in  incorporated the measure of

luminance on the road alongside the counting traffic to design a closed-loop control scheme. First, the system sets

the appropriate dimming mode in accordance to the measured traffic flow, then it continuously adjusts to

fluctuations in lighting conditions, maintaining constant illumination. However, this study focused only on the

methodology of the control system, with no direct claim of energy savings through the use of their proposed

system.

Parametric and non-parametric traffic models

Other studies use more advanced techniques involving traffic prediction models, which are broadly categorized into

parametric and non-parametric models. Parametric models are characterized by a fixed number of parameters and

limited complexity. They operate under specific statistical distributions and maintain a predetermined functional

relationship between input and output variables. This feature enables them to use training data more efficiently

compared to their non-parametric counterparts .
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In response to the heterogeneity and randomness of traffic flow distributions across time intervals, Shahzad et al.

, leveraged a probabilistic model, namely the Poisson distribution for traffic flow prediction. This parametric

model was built upon VANET parameters, primarily traffic volume and vehicle speed as macroscopic factors, and

vehicle headway as a microscopic factor. A chi-square test indicated a robust correlation between theoretical and

predicted distributions. For a smooth transition during light changes and to avoid distracting drivers, lamps were

controlled in groups. Furthermore, a minimum dimming level was maintained to ensure pedestrian safety and

effective CCTV visibility.

Juntunen et al. , used a Kalman filter to generate tracking estimates of pedestrians moving along a one-

dimensional path, based only on the detection of PIR sensors. The authors used a special PIR sensor with three

detection fields which could determine the direction of pedestrian movement based on the sequence of triggering.

The system was designed to continuously update and refine its tracking estimates based on new detections,

improving the accuracy of the Kalman filter over time. Then, based on the estimated position and movement of

pedestrians, a zoning light profile was applied where the illuminated area reaches further in front of the user than

behind.

Other parametric models involve a time-series model called the Auto-regressive Integrated Moving Average models

(ARIMA). In the study of Agramelal et al. , one of the studied forecast models is the seasonal ARIMA model, i.e.,

SARIMA, which contains seasonal autoregressive, differencing and moving average components to deal with

seasonality in data. The model was tested against others in order to predict the upcoming hourly traffic flow on a

highway to control stand-alone SLs.

Simulation models, like Cellular Automata (CA), are essential when traffic data is unavailable, such as during

renovations or testing changes in road infrastructure. CA divides roads into cells, either vacant or vehicle-occupied,

aiding in designing efficient lighting for various traffic situations. Nefedov et al.  used a CA model to simulate

traffic, dividing roads into cells representing either a car or a gap. Applying Nagel-Schreckenberg rules, they

generated traffic speed and vehicle gaps, using segments of eight cells between SLs for control. A zoning light

profile was applied in their one-lane vehicular simulation, adjusting illumination based on speed limits. Mustafa et

al.  found that increasing the number of cells per section, representing the distance between light poles, reduced

energy savings as it decreased the chances for lamps to be turned off or dimmed due to less likelihood of sections

being unoccupied by vehicles. CA models are simple yet efficient for simulating traffic, making them ideal for

complex systems with limited computational resources. In SL applications, other models like multi-agent systems or

Simulation of Urban Mobility (SUMO) are also used. SUMO simulates individual vehicle behaviors and interactions

with road networks, considering aspects like speed and lane-changing.

Parametric models typically outperform non-parametric models when data structure assumptions are met, offering

efficiency and robust results with less data. However, they may struggle to utilize additional information in large

datasets and can be negatively affected by deviations from assumed functions. On the other hand, non-parametric

models do not assume any specific distribution on the traffic data.
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Nikolaus et al.  developed a quarter-hour occupancy algorithm to control SLs in a port, using data from port

personnel and empirical measurements. The algorithm produced random, non-biased occupancy values, adjusting

SLs power based on occupancy. The authors controlled 60% of the brightness, while 40% was maintained for

safety, ensuring illumination even in the absence of people in the port. Many contemporary non-parametric models

leverage artificial intelligence techniques, including decision trees, support vector machines, and deep learning

models, among others. While these models adeptly capture the non-linear characteristics of traffic patterns, they do

so at the expense of needing ample high-quality data and significant computational resources for training .

5.5. Zoning-Based Control

The core concept of a zoning control scheme revolves around accurately identifying, positioning, and measuring

the speed of road users. This approach offers the potential for a more energy-efficient, safety-conscious, and user-

responsive lighting system.

Atici et al.  and Hans et al.  implemented real test-beds to evaluate the influence of light on pedestrian safety

and perceptions. Ascending light intensity improved feelings of safety for stationary pedestrians, while moving

pedestrians preferred a descending light profile, feeling safest when the nearest lamp emitted maximum

illumination that tapered off with distance. Both studies used average pedestrian speed to estimate the timing to

switching between light levels, with each SL having a 20% dimming step to enhance visual comfort and account for

power-line losses and errors. The exact number of lamps to control in the pedestrian vicinity was not specified in

either study, as they did not employ sensory-based control. Jose Poza et al.  developed a simulation model to

assess pedestrian lighting needs across various illumination zones, taking into account the imprecision of PIR

sensors. The proposed system anticipates the future positions of pedestrians, evaluating whether the nearest SL

will meet the lighting needs of pedestrians at those anticipated positions. The study utilized arrays to capture the

lighting needs of pedestrians and the light intensities of SLs, facilitating a comparison to categorize the outcomes

of the control algorithm. Various control strategies were examined, with efficiency assessed through various

metrics such as curve analysis and the area under curve metric, ensuring a balance between power consumption

and user comfort. The research indicated that using two to three preceding SLs equipped with PIR sensors for

tracking pedestrian movement produced optimal results. However, the study did not employ a specific model to

precisely quantify utility. Lau et al.  introduced a utility model to evaluate the effectiveness of lighting for

pedestrians and vehicles. For pedestrians, the model considers avoidance (obstacle detection, face recognition,

navigation) and prospect (preference for descending light distribution). For motorists, it assesses hazard detection

and stopping capabilities, using undimmed lamps in front. Building upon the utility model, the authors introduced a

controller named the Traffic-Aware Lighting Scheme Management Network (TALISMAN). This controller adjusts SL

illuminance according to the needs of road users, aiming to balance between maximizing utility and conserving

energy. Simulation results indicated that TALISMAN, while not always the most energy-efficient option, consistently

optimizes utility for both motorists and pedestrians. Dizon et al. , leveraged the TALISMAN controller to assess

its practical efficacy, applying real-world data within the StreetLightSim simulation tool. This simulation incorporated

a road traffic model, based on the Department for Transport, which distributes annual average daily traffic flow

throughout the day. The researchers studied two distinct roads in Sheffield, a residential area and a city center
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location. Findings indicated that TALISMAN significantly reduced energy consumption on both roads, although

results may vary based on location, SL type, and road characteristics.

Both Lau et al. and Dizon et al. , used fixed speed limits, resulting in inflexible illumination profiles. These

profiles often led to inefficient lighting, affecting both slower vehicles and faster emergency vehicles like

ambulances and police cars. In this aspect, Knobloch et al.  introduced a dynamic, speed-dependent dimming

profile called Light on Demand (LoD), which adjusts lighting based on the speed of individual traffic elements, such

as cars and buses. The system uses an inverse Time-to-Live (TTL) approach to detect vehicle velocity and

direction, considering factors like fear zone radius and stopping distance. This approach allows for significant

energy savings, with optimal results at speeds around 50 km/h. Building upon the LoD system, Arben et al. 

explored its application in non-uniform traffic distributions, influenced by real-world factors like traffic lights and

pedestrian crossings. Their findings highlighted that the LoD strategy is most effective in these non-uniform traffic

conditions, emphasizing its practical utility and potential for enhanced energy conservation in realistic traffic

scenarios.

Previous studies on adaptive lighting systems lacked reliable techniques to distinguish between different types of

road users, often resorting to the unreliable method of using speed for differentiation. Previous studies on adaptive

lighting systems lacked reliable techniques to distinguish between different types of road users, often resorting to

the unreliable method of using speed for differentiation. In response to this shortcoming, Yuxi et al. , proposed a

novel solution to improve adaptive lighting systems by using received signal strengths (RSS) to distinguish

between vehicles and pedestrians without extra sensors. This method utilizes the unique signal absorption and

reflection properties of human bodies and vehicles, and their different dimensions and speeds, to create distinct

amplitude energy attenuation patterns in wireless signals. An adaptive RSS baseline adjustment was introduced to

enhance performance and resilience against environmental noise. While the system showed high accuracy in

identifying road users, its robustness could be affected by close proximities between users and other moving

objects like trees.

Overall, the zoning light scheme presents several advantages and challenges. It has the potential to significantly

save energy by tailoring lighting based on the presence and behavior of road users, enhancing visibility and

awareness for safety, and possibly restraining speeding vehicles. However, its effectiveness is most prominent with

individual road users, typically during late-night hours or in areas with low traffic density. Challenges arise from

complications due to mixed road user types, an issue not addressed in prior studies. Additionally, the scheme

requires a sophisticated and accurate sensor network for precise detection, speed measurement, and user

identification.

5.6. Cost-Effective Optimization Control

An objective function, in optimization, is a mathematical construct used to maximize or minimize a set of variables.

In SL, it often aims to minimize energy consumption or installation costs while maximizing safety, operating within
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constraints like regulations, lamp specifications such as minimum dimming level, and control schedules. Various

techniques, from exhaustive searches to genetic algorithms, are employed to solve these objective functions.

Viani et al. , leveraged a particle swarm optimization (PSO) algorithm to minimize a cost function aiming to find

optimal dimming profiles for a set of lamps in a SSL system. By doing so, they aimed to optimize energy

consumption while maintaining the desired brightness levels. The input data for the PSO included environmental

brightness and energy consumption, and the output provided the best dimming profiles to meet the brightness

values and energy consumption targets. After the initial setup, the system demonstrated nearly constant energy

savings for two years. However, the paper notes the need for further large-scale testing in complex urban

environments.

Mahoor et al. , employed a brute force algorithm for optimizing a cost function, with group arrangement and

dimming level as primary inputs. The goal was to identify the best group of SLs to activate and determine an

energy-efficient dimming level, considering local traffic data and ambient luminance. The model, updated every 30

min, aimed to manage constraints related to HID lamps and ensure uniform light distribution. Results showed that

incorporating traffic data led to higher energy consumption compared to conventional lighting control, yet it still

achieved notable energy savings, indicating significant potential for further energy savings by adopting LED lamps.

Sutil et al. , employed the Artificial Bee Colony (ABC) optimization algorithm to optimize energy consumption

within a university campus. Their study focused on three different zones, each conforming to a specific light

subclass. The optimization focuses on minimizing the illumination level during reduction periods, while adhering to

a set of constraints, including illumination levels with respect to the P subclasses, dimming levels of the MH lamps,

and ensuring maximum illumination when a pedestrian enters the area covered by the SLs. Tested across various

scenarios, considering academic activity and examination periods, the system demonstrated adaptability,

configuration flexibility, and significant yearly energy savings.

Seeking the optimal control plan for a micro-grid photovoltaic SL installation, Kov’acs et al. , used a linear

programming approach to optimize energy management, aiming to minimize electricity costs based on fluctuating

tariffs. They designed a controller deciding on electricity buying or selling, requiring accurate forecasts of energy

production and consumption, using Auto-Regressive with eXogenous inputs models. The controller’s energy flow

was formulated as an LP problem to minimize the cost function, considering variables like electricity purchase and

feed-in rates and battery states at each time step. Annual results showed a positive energy balance with higher

energy export, emphasizing that the benefits of an intelligent lighting system depend on specific scenarios,

considering traffic, weather, and energy tariffs. Tutus et al. , introduced the P-System Outdoor Illumination

System (PSOIS), a multi-objective optimization approach aimed at maximizing illumination efficiency and luminaire

lifespan while minimizing power consumption. PSOIS considers factors such as luminaire characteristics and

status, installation zones, and peak and off-peak durations, and operates in four phases: registration, initialization,

evaluation, and reorganization. Luminaires register with the closest local controller, which then registers with the

central controller. The local controller assigns illumination modes to each luminaire based on computed luminaire

fitness values, and luminaires update their configurations accordingly. Simulations showed that PSOIS is more

energy-efficient compared to other evaluated methods.
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Table 3 provides detailed information on light schemes and energy savings applied for the aforementioned

dynamic control methods.

Table 3. Related work on control methods employing computational techniques.

PaperEnergy
Source Used Sensors Used Lamps System

Implementation Dimming Profile Energy
Savings

Grid

Temperature;
humidity; particle
concentration;
power meters

LED
Simulation and
prototype

CCT + group
controlled + step
dimming

Unspecified

Grid None LED
Simulations using
a real case study

Step dimming

Connectivity
should be
maintained at
all time

Grid Light sensor
Not
specified

Experiments in
laboratory

Group controlled +
two steps
(ON/OFF)

Unspecified

Grid
Eye-tracking
glasses

LED
Simulations +
indoor

Step dimming +
group controlled

Unspecified

Grid
Road side
sensors

Not
specified but
LED

Prototype

Step dimming,
each speed
corresponds to a
light level

Unspecified

Grid
Lux;
temperature;
power meters

HPS
Implemented in
university parking

Step dimming +
part night

Up to 45%

Grid Light LED Simulations Step dimming Up to 70%

Grid
Motion, photo-
electric, pv
panels

MH, HPS,
LED

Implemented on
a university
campus

Group control +
step dimming

33%

Grid Doppler sensor LED

Installed in
Luyang Avenue,
Lucheng City,
China

Predefined +
zoning (ahead) +
two steps control

Up to 19%

Grid
Cameras;
infrared;
inductive loops;

LED
Installed on a
pilot street

Step dimming 59%

Grid Light sensor LED Installed at a
university sub-

Step dimming +
group control

From 68% to
80% in winter
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PaperEnergy
Source Used Sensors Used Lamps System

Implementation Dimming Profile Energy
Savings

street and summer

Grid
Custom PIR
sensor

LED
Real
implementation

Zoning with two
steps

From 60% to
77%

Grid Vehicular sensor LED Simulations Zoning + two steps Up to 60%

Grid
Presence
sensors

LED Simulation Zoning + two steps Up to 57%

Grid
Photodetector;
occupancy
sensors

Fluorescent;
LED

Simulations using
a port in Greece
as testbed

Step dimming +
group control

56% reduction

Grid Presence sensor LED
Prototype at a
campus

Zoning Unspecified

Grid PIR LED Simulations
Step dimming +
zoning

Unspecified

Grid
Light; presence
sensor

LED Simulations
Zoning + step
dimming

Up to 37%

Grid Traffic sensor LED Simulations

Dynadimmer:

step dimming +

part night,

Chronosense:

two steps + part

night

Talisman:

zoning

from 12% to
94%

Grid
Radar; photo
diodes

LED Simulations Zoning + two steps Up to 60%

Grid Light; motion LED Simulations Zoning + two steps

Up to 52% for
non-uniform
traffic
distribution.

Grid Light sensor LED
Implemented in a
testbed

Zoning + step
dimming

90%

[85]

[87]

[88]

[89]

[91]

[92]

[30]

[18]

[93]

[94]

[95]



Smart Street Light Control | Encyclopedia.pub

https://encyclopedia.pub/entry/51208 21/53

5.7. Camera-Based Control

Video sensors, compared to other types, provide unique benefits such as extracting data on road user positioning,

speed, object classification, and brightness. However, they require an advanced processing pipeline to manage

challenges like low-light conditions, image noise, variable brightness, and mounting position. This subsection

specifically addresses computer vision-driven approaches and algorithms, the AI-based methods are further

discussed in the AI-based control section. Table 4 provides detailed information on light schemes and energy

savings.

In the context of SLs, cameras usually function in low-brightness conditions or during nighttime. The minimum level

of brightness required for a camera to operate effectively during nighttime can vary based on several factors,

including the camera’s sensor, lens, and its low-light capabilities. Studies suggest various brightness levels,

ranging from 10% to 50%, to optimize camera functionality in the absence of road users . Different

cameras operate effectively at varied light levels; monochrome cameras work at levels below 0.01 lux, while

advanced cameras with infrared or thermal imaging operate in near or total darkness . While vehicle headlights

aid in detection, a minimum brightness level or advanced cameras are crucial for pedestrian detection.

Deploying video sensors on several SLs is effective but costly. Murthy et al. , installed cameras on each

luminaire, covering a 30m–20m area for vehicle and pedestrian detection. To minimize costs, efficient techniques

based on geometrical constraints are suggested, allowing cameras to cover wider areas. However, this presents

challenges in positioning and speed measurement due to a lack of a unified field of view, requiring careful

calibration techniques or multiple camera perspectives. Solutions include establishing a conversion ratio to

standardize the field of view, using predetermined camera heights and angles, and employing camera calibration

and multi-view geometry to estimate 3D information from 2D images . Deep learning methods can also assist in

overcoming the challenges of video sensor deployment for traffic monitoring and control.

The general steps of image processing are illustrated in Figure 3. The process begins with Image Acquisition,

where video frames are captured from the camera feed. The quality and clarity of these images are paramount,

and this stage often involves adjusting camera settings for optimal capture, especially in low-light conditions. The

next step, Preprocessing, involves improving image quality for easier analysis. This can include noise reduction,

brightness normalization, and contrast adjustment to ensure the details of interest are discernible. The third stage,

Segmentation, is where the images are partitioned into regions or objects of interest. This could involve separating

moving objects like vehicles or pedestrians from the static background. Feature Extraction follows, where specific

PaperEnergy
Source Used Sensors Used Lamps System

Implementation Dimming Profile Energy
Savings

Grid
Lux meters,
power meters

LED
Installed in two
different test sites

Step dimming +
group controlled

30%

Grid Ambient HID lamps
Installed on a
pilot street

Step dimming +
group control

Between 35%
and 45%

Grid
Motion; current;
voltage

MH
Implemented for
pedestrians on a
campus

Zoning + group
control + freely
controlled

12,165 KWh
energy
savings for
107 campus
SLs

Grid
+
solar
PV

Infrared LED
Installed
prototype at a
campus

Zoning + group
control + two steps

55%, with
6043 KWh
annual
positive
energy
balance

Grid Not specified MH and LED Simulations
Step dimming +
group controlled

37%
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attributes from the segmented objects are gathered. These features can range from basic geometric properties like

size or shape, to more complex visual characteristics, like texture or color. Finally, in the Decision Making stage,

the system uses the extracted features to make a determination or prediction. This might involve classifying an

object, estimating speed, or determining the level of activity in a scene. Following this pipeline, the extracted

information can be used to control the brightness level of the SLs, among other applications.

Figure 3. Sequential workflow of key processes in image processing.

Veena et al. , used an image processing method that begins with converting video into individual frames. Each

frame is converted from RGB to grayscale and binarized. Contour mapping is then employed to distinguish the

object from the background, with the area of the object subsequently calculated. Objects smaller than a certain

area are discarded. This processing is implemented through edge computing, utilizing a Raspberry Pi and OpenCV

libraries. The system, as proposed, can differentiate between pedestrians and vehicles based on the measured

area. In the proposed scenario of a highway, lamps are switched on in the direction of detected vehicles, however

the paper does not specify the number of lamps to be operated in front of each detected vehicle.

Gagliardi et al. , utilized image processing, starting with the conversion of RGB images to grayscale, followed

by foreground detection using a mixture of Gaussian models for background subtraction. A binary mask is then

created to distinguish objects from the background, and binary image analysis helps in detecting and identifying

vehicles and pedestrians using an algebraic procedure based on the eigenface approach. However, no distinct

control between pedestrians and vehicles was implemented. The study demonstrated that the system is energy-

efficient compared to HPS lamps and LED installations. Higinio et al. , initiated their study with image

acquisition, followed by filtering to enhance contrast and luminosity. Specific areas, believed to potentially contain a

human figure, are identified and features such as edge, texture, or color are extracted to generate human

descriptors. Classifiers and learning algorithms then discern human from non-human descriptors, controlling the

SLs accordingly. Additionally, behavioral analysis techniques are suggested for predicting a person’s movements,

allowing anticipatory activation of SLs along their path.

Esben et al. , used three thermal cameras and a Kalman filter for tracking and detecting pedestrians in a

parking lot. They applied background subtraction for pedestrian detection and adjusted for scene changes. Post-

processing involved binarization and coordinate mapping of detected objects. Groups of pedestrians were

considered a single object, and their positions and velocities were calculated using the Kalman filter. The system

was tested under various lighting scenarios, including dimmed lights, fading lights, and lights following pedestrians,

to evaluate its effectiveness. Castellano et al. , utilized an upgraded ORB algorithm (Oriented FAST and

Rotated BRIEF) for effective image feature detection in various settings. The algorithm compares the current image

frame with a dynamic background that adapts to changing conditions, with an in-field tuning applied to reduce false
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negatives. When a vehicle is detected, an event is generated, including details like detection area, object ID,

vehicle direction, and speed. The experimental setup consisted of a single detection point with ambient sensors

and three vehicle-detecting cameras mounted on a SL, along with four actuation points featuring PV powered LED

luminaires.

Mahmood et al. , used license plate detection for vehicle identification, dividing roads into zones with sensors

and night cameras. When an object is detected, the camera captures an image, identifies the vehicles license

plate, and activates the zones lamps. Umar et al. , enhanced computational efficiency by combining cameras

with LiDAR sensors, focusing the detection algorithm on a LiDAR-informed Region of Interest (ROI), improving

detection efficiency and accuracy. Subaie et al. , avoided unnecessary energy consumption by activating lamps

and cameras in relevant zones upon detection, adjusting luminosity based on classification outcomes, optimizing

energy usage while maintaining effective illumination.

Table 4. Related works on control methods employing cameras and computer vision.

[108]

[108]

[109]

PaperEnergy
Source Used Sensors Used Lamps System

Implementation
Dimming
Profile Energy Savings

Grid IP camera LED
University
campus

Two steps Unspecified

Grid Camera

Not specified
but since it is
20% min then
LED lamps

Simulations
Step
dimming

Up to 68%

Grid
Motion; camera;
weather
sensors;

LED
Real
implementation

Step
dimming +
group control

80% against HPS
with no control
and 70% against
LED lamps

Grid Thermal camera
RGB LED
lamps

Real
implementation

Zoning +
freely
controlled +
group control

90%

Grid
Ultrasonic; LDR;
PIR

LED Simulation
Step
dimming

Unspecified

Solar
PV

LDR; camera;
PIR

LED Simulation
Two steps +
group control
+ zoning

86%

Solar
PV

Camera;
illuminance; rain;
temperature;
humidity

LED
Prototype
installed in an
intersection

Step
dimming +
part night

36%

[103]

[102]

[107]

[105]

[109]

[108]

[104]



Smart Street Light Control | Encyclopedia.pub

https://encyclopedia.pub/entry/51208 24/53

5.8. User-Driven Control

Leveraging the connectivity offered by various devices and networks, a few studies explored user interaction with

SLs. Recognizing that individuals can have different lighting preferences, these approaches range from sensing the

proximity of road users through their connected devices, to empowering users to communicate and interact directly

with the lighting system. Most commonly, this is facilitated via smartphones, graphical user interface (GUI),

touchscreens, or via emerging networks such as VANETs, specifically for vehicular users.

Mullner et al. , used GPS and smartphones to track pedestrian locations, enabling a zoning light profile.

Pedestrians could adjust the lighting radius via an app, designed for areas with low pedestrian frequency and high

crime rates. The system, incorporating LED lighting and web applications, dynamically controlled SLs based on

pedestrian location. Administrators could define zones and manage lampposts through a web application,

activating lamps based on user-defined safety zones and recent user location. Cho et al. , proposed a security

lighting system that uses beacon devices, smartphones, and IR sensors to detect pedestrians, enhancing safety in

lit alleys. The system activates additional lighting attached to the luminaire when a pedestrian is detected. In

another study , a mobile application was used to control SLs, allowing authorized users to adjust brightness

based on ambient light, movement, and personal preferences, and to remotely monitor the system.

Previous approaches to such systems require a subscription for use, which limits user accessibility. Additionally,

relying on smartphones raises concerns about location privacy and can lead to rapid battery depletion due to

constant usage of GPS, Bluetooth, and internet connectivity .

Other studies have emphasized the importance of Graphic User Interfaces (GUIs) in managing and controlling SL

systems. Kovács et al. , developed a GUI that provides real-time status updates, customization of dimming

levels, and system administration features, ensuring regulated access based on user roles. Dolores et al. ,

proposed a smart central management system with a map-based GUI, allowing users to manage luminaires,

configure light points, and access diagnostic tools for system failures. Abarro et al. , offered a GUI that enables

users to switch between various operational modes of the lighting system, ensuring customizable control based on

specific needs. Additionally, Beccali et al. , used touchscreen technology to enhance visitor interactions, allowing

selection from various lighting configurations and access to information, making the user experience more

engaging.

PaperEnergy
Source Used Sensors Used Lamps System

Implementation
Dimming
Profile Energy Savings

Grid
and
solar
PV

LDR; infrared
camera

LED and HPS
Laboratory tests
and simulations

Step
dimming +
group control

30%

Grid Camera LED Prototype
Zoning + two
steps

Unspecified

Grid Camera LED
Implemented in a
US military base

Two steps +
group control

90% energy
savings vs.
uncontrolled HPS
lamps
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Mohamed et al. , used Vehicular Ad-hoc Networks (VANETs) for SL control, where vehicles act as mobile

nodes, enabling real-time tracking of their presence and count. They proposed two solutions: coarse-grained,

involving virtual road zones controlled by Roadside Units (RSUs), and fine-grained, allowing individual SL control

by their own controllers or by the RSU. VANETs offer cost-effectiveness by eliminating the need for specific

networks and equipment, thereby reducing costs and accelerating system deployment. However, the study only

used vehicle presence and count, leaving aspects like location, direction, and speed unexploited in SL controls.

5.9. Artificial Intelligence-Based Control

5.9.1. Artificial Neural Networks and Deep Learning

In the context of SLs control, ANNs can be used to: (1) forecast time-series data like traffic volume, weather or

renewable energy production; (2) process video frames for object detection and classification; and (3) output the

desired light intensity directly, based on the analyzed data. The control modes in an ANN-based system can either

involve an intermediary controller to translate the ANN output into lighting adjustments or can directly set the light

level without such an intermediary as depicted in Figure 4.

Figure 4. Control modes of an ANN-based lighting system: (a) the ANN directly outputs the light level, and (b) the

ANN processes data and sends it to a lighting controller.

In their respective studies, Kolasa , and Smys et al. , proposed the use of feed-forward neural networks

(FFNN) to control SLs based on meteorological data. The FFNN was utilized in two ways: prognostic functionality

for generating a control plan based on meteorological data for the next 24 h, and ongoing correction functionality

for continuously adjusting lighting intensity in real-time. The system featured three operational modes, determining

the number of NN outputs and the level of control over the lighting units. Kolasa implemented an FFNN with an

input size of nine, representing data such as date, time, and weather factors. The hidden layer contained 16

neurons, and the output size corresponded to the light intensity of a group of lamps. The choice of the number of

neurons in the hidden layer was optimized through experimentation. Smys et al. , on the other hand, used an

FFNN trained on meteorological data from various weather stations, incorporating inputs such as rain, temperature,

and atmospheric pressure. The FFNN outputted the light intensity for the next 24 h. In both studies, the training

process involved backpropagation with a momentum factor and continued until a minimum root mean square error

was achieved.
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Pragna et al.  used an ANN to optimize SL brightness and energy consumption, based on traffic volume and

inter-distance between luminaires. The ANN, consisting of three layers, took inputs like traffic volume and inter-

distance to predict energy consumption and was trained using backpropagation with a variable learning rate. The

model showed improvements in terms of energy consumption compared to the work of Lau et al. . However,

their model incorporated a pedestrian zoning profile for vehicles, causing more energy waste by unnecessarily

activating rear lamps. Additionally, their model assumed a linear relationship between dimming and power

variation, which contrasts with experimental findings of non-linearity .

De Paz et al. , used an ANN to accurately model the non-linear relationship between dimming levels and power

consumption in SLs. They trained two separate NNs specific to the type of luminaires, one converting dimming

levels to power consumption and the other calculating light intensity based on allocated power. Their

comprehensive approach also included optimization techniques such as ANOVA and expectation-maximization

clustering for data analysis, and an algorithm for cost minimization while maintaining adequate luminosity. A smart

server continuously adjusted the lighting schedule in real-time, ensuring optimal illumination and energy efficiency.

In all the aforementioned studies, ANN were used to directly output a variable reflecting the light level. Additionally,

ANN can be employed to process data, as demonstrated in the work of Mohandas et al. . In their study, an ANN

was used to generate new projections for unforeseen scenarios and to process information based on SL

characteristics such as height, arm length, and inter-spacing, along with data collected from motion and light

sensors.

To forecast traffic flow in the upcoming hour, Pizzuti et al. , and Marino et al. , employed a basic ensemble

learning model (BEM). In time-series forecasting, a set number of previous observations, known as lag or time

window, are used as inputs to the Neural Network (NN) to make future predictions. The size of the time window,

which is subject to optimization, determines the input size of the NN. Pizzuti et al. found an 8-h time window to be

optimal based on preliminary analysis, employing a FFNN with eight input neurons, 10 neurons in the hidden layer,

and one output neuron for each ANN used in the BEM. The brightness was adjusted linearly based on normalized

traffic flow, ranging from 50% to 100%. On the other hand, Marino et al. used a 24 h window and implemented a

“save best” approach during training to avoid overfitting. They referred to the EN 13201-2 , norm to translate

the forecasted traffic into appropriate lighting classes. Agramelal et al. , explored various types of ANNs for

traffic forecasting and controlling PV-powered streetlights. They tested a single hidden layer FFNN and a deep

neural network (DNN) with multiple hidden layers, using different lag values to predict traffic on a highway for the

upcoming hour. The performance of these NN models was compared against a statistical forecast method,

specifically the SARIMA model. The authors evaluated the forecast accuracy using RMSE and MAPE as metrics.

The DNN model with a 24 h time window and two hidden layers containing 100 and 64 neurons, respectively,

outperformed other traffic forecast models, demonstrating superior accuracy for controlling PV-powered

streetlights. In a similar work , the authors examined various traffic prediction models to forecast the hourly

traffic on two separate carriageways of a highway. They used a multivariate traffic model incorporating traffic

volume, speed, and occupancy rate. Superior performance was noted from both the Long Short-Term Memory

(LSTM) and DNN models, each with a 48 h lag. Both models utilized a dropout rate to prevent overfitting and had
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two hidden layers with 100 and 50 neurons, respectively. In both cases, the authors fed the predicted traffic volume

to a fuzzy controller to control SLs.

Although previous studies have demonstrated notable energy savings, leveraging a shorter time horizon for traffic

prediction can further enhance these savings, especially with the development of deep learning. A 15-min time

horizon was reported as optimal by Wojnicki et al. , for forecasting to optimize energy savings while addressing

concerns related to light fluctuation and reduced visibility.

To forecast PV power generation, in the study by Tukymbekov et al. , a deep learning model using LSTM was

employed to predict power generation in adverse weather conditions for PV-powered SLs. Historical data from an

installed weather station were used to train the model, while meteorological forecast data obtained from the

internet were utilized to forecast hourly power generation for the next five days. The generated forecasts were used

to optimize the consumption of the SLs by calculating an optimal lamp brightness coefficient, ensuring a minimum

battery charge of 30% and a minimum lamp brightness of 20%. The accuracy and storage capabilities of the LSTM

model proved effective in improving the energy management of the SL system. In Agramelal et al. , a

multivariate multistep gate recurrent unit (GRU) was employed to forecast the solar irradiance for the upcoming 3

days. The predicted irradiance values were used to reflect the power generation of PV SL for the upcoming 3 days.

The authors then aggregated the total predicted values during the 3 days and used it along with the forecasted

traffic flow in the upcoming hour to control brightness through a fuzzy logic controller.

Zamanidou et al. , used a multivariate LSTM model for day-ahead power generation forecasting from a PV

panel and wind turbine in a hybrid renewable energy system. They optimized energy management by incorporating

weather variables and historical data. The model considered cloud cover for solar power and wind direction for

wind power, significantly improving prediction accuracy. An energy management algorithm balanced power

production and consumption, adjusting LED lights and charging hotspots based on forecasts. Testing showed a

23% average reduction in power consumption and savings of 80.63 KWh of battery capacity over ten days, while

minimizing reliance on the grid.

AI in computer vision has become increasingly popular due to its ability to provide powerful tools for extracting

valuable features from visual data. This enables computer systems to effectively perceive and interpret images and

videos, facilitating tasks such as object detection, recognition, and segmentation.

Bilal et al.  used a FFNN for real-time object detection at night, turning SLs fully ON when a pedestrian or

vehicle is detected. However, they did not explore various light control schemes based on object classification.

Supriya et al. , focused on identifying vehicles through license plate numbers using a Convolutional Neural

Network (CNN), mainly for speed measurement and tracking fast-moving vehicles. Qi Yun et al.  utilized a

Support Vector Machine (SVM) for recognizing vehicle lamps at night, aiding in traffic flow measurement and

illumination level estimation. Their approach involved processing video frames through various steps such as

grayscale transformation and binarization, followed by SVM-based vehicle lamp recognition. A multi-model fusion

approach, combining NNs and exponential smoothing, was used for predicting traffic flow and adjusting brightness
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levels accordingly. The system also featured real-time control, activating based on adjacent area illumination

levels, and could provide early warnings for consistent abnormal illumination values, indicating a need for

intervention.

In Yuan Xu et al. , surveillance cameras were deployed to detect pedestrians in parks and plazas. The system,

implemented on a Raspberry Pi, uses a Histogram of Oriented Gradient (HOG) for fast detection and a CNN. The

CNN, inspired by the You Only Look Once (YOLO) architecture, helps eliminate false positives caused by the HOG

confusing humans and animals. The system has demonstrated higher accuracy in pedestrian detection compared

to other sensors, effectively avoiding false lamp activations triggered by animals.

YOLO (You Only Look Once) is a real-time object detection system that utilizes a CNN to analyze entire images in

one pass. It divides images into grids, predicting bounding boxes and object probabilities within each cell, enabling

swift and accurate object identification.

In SL control, YOLO is considered as the optimal choice due to its speed, efficiency, and ability to detect multiple

objects simultaneously. When combined with other sensors, YOLO can reduce processing time and enable quick

adjustments in lighting intensity based on detected pedestrians or vehicles . Additionally, YOLO exhibits strong

generalization performance, making it effective in handling diverse traffic scenarios and lighting conditions.

Shoaib et al. , evaluated object detectors like YOLOv2, YOLOv3, SSD, and Faster RCNN with various

architectures to improve SL efficiency. Faster RCNN with Efficientnet-B0 had the highest mean average precision

(mAP), while YOLOv2 and v3 had the quickest detection times. Their approach involves dynamically adjusting SL

intensity based on vehicle proximity, optimizing energy use. Chen et al. , utilized YOLOv3 for object detection in

SL control due to its Feature Pyramid Network (FPN), improving the detection accuracy of small objects at various

scales and resolutions. In their design, SL in a parking lot adjusted brightness based on vehicle detection. Edge

computing was emphasized to minimize data transfer needs, distributing processing closer to data generation,

reducing reliance on remote cloud servers .

Jang woon Baek et al.  used Tiny-YOLO in edge cameras for object detection, dynamically adjusting SL

brightness based on detected pedestrians and vehicles. Ren Tang et al.  developed an intelligent dimming

method specifically for intersections, using the YOLOv5s detection model. Their system was designed to adapt the

dimming profile based on the type of road user detected, assigning different output powers and dimming priorities

for various modes such as motor vehicle mode, non-motor vehicle mode, and pedestrian mode. The YOLOv5s

model outperformed other models like SSD, YOLOv4, and YOLOv3 in terms of detection speed and classification

accuracy, achieving significant energy savings compared to traditional and LED streetlighting technologies. Asif et

al. , tested a SSL system at two sites. The system used YOLOv5 for real-time vehicle and pedestrian detection

on the NVIDIA Jetson Nano multimedia processing unit. It controlled the intensity of SL based on the detected

traffic flow. The algorithm consisted of flow control for video data processing and a prediction model combining

YOLO and region-based techniques to identify different types of vehicles within a region of interest (ROI). The

evaluation of the system showed reduced power consumption across various periods of the day. The authors of
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 present a system based on a responsive sensor network, adjusting the intensity of SLs in response to traffic

volume. An IP camera equipped with the YOLOv5 algorithm captured and classified the type of traffic, with hourly

counts stored for analysis. Lighting classifications were calculated per the CEN/TR 13201-1:2014 standard,

accounting for traffic volume and composition, while other parameters remained constant. Findings revealed that

the responsive sensor network delivered the highest energy savings. Table 5 details the specific NN architectures,

their associated input-output, and the corresponding lighting schemes in each reviewed study.

Table 5. Related works on control methods employing ANNs.

[139]

PaperNN
Application Type of NN Inputs Outputs Intermediate

Controller
System
Validation

Dimming
Profile

Energy
Savings

Detect
vehicles,
pedestrians
and
motorists in
night
conditions

YOLOv5s
High-definition video
images

Predicted
bounding
boxes and
class labels
of the
detected
objects

Controller
outputs
different
brightness
level based
on the class
of detected
road user.

Experimental
setup on an
intersection

Step
dimming

Up to 35.2%
energy
savings

Detection
and
classification
of objects at
night

FFNN Video images
Predicted
bounding
boxes

Simple if-then
rules based
on if there is a
valid
detection

Simulations

Two
steps
(20%
minimum)

Not
specified

Detect and
identify road
users from
video

SSD,
YOLOv3,
YOLOv2

High-definition video
images

Predicting
bounding
boxes and
class
probabilities

If-then rules
are used to
change the
brightness
level when a
vehicle
approaches
or leaves the
detection area

Simulations Zoning
Not
specified

Multivariate
time-series
forecast:
predict
energy
generation
of PV panel
and wind
turbines

LSTM

For PV power: solar
irradiation,
temperature, and
cloud cover
prediction data.For
wind power:
historical data and
climate prediction
data, including wind
speed and direction

Day-ahead
hourly power
generation of
a PV panel
and wind
turbine

If-then rules
based on load
demand and
power
production

Simulations
Step
dimming

An average
of 23%
across 10
days, while
day-to-day it
ranged from
6% to 80%

Image
processing

YOLOv5 Video images from
IP camera

Classification
of road users

Light classes
obtained from

Simulations Step
dimming

Up to 55%
reduction in
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PaperNN
Application Type of NN Inputs Outputs Intermediate

Controller
System
Validation

Dimming
Profile

Energy
Savings

and traffic
count

traffic count
and traffic
composition
along with
other fixed
road
parameters

(classes) electricity
costs

Image
processing

CNN Video images

Detect
vehicle
through
license plate
numbers

Controller not
based on
results of
image
processing

Simulation
Two
steps

Not
specified

Image
processing

YOLOv3 Video images

Bounding
boxes, along
with their
class labels
and
confidence
scores;

If-then rules
switching ON
lamps in front
of detected
vehicles on a
parking lot

Simulation
and small
scale
prototype

Two
steps +
zoning (in
front of
vehicles)

Not
specified

Image
processing

Tiny-
YOLO

Video images

Detect, track
and classify
type of road
users

Simple if-then
rules based
on if there is a
valid
detection

Simulation
Two
steps

Not
specified

Predict
energy
consumption

FFNN

Three inputs: inter-
distance between
streetlights; energy
consumption of the
SLs; traffic volume
on the road;

Reduced
energy
consumption
of the street
lighting
system

None Simulations Zoning

Various
energy
savings for
different
interspaces
and traffic
flow
between
SLs

Control
lamps

FFNN Meteorological data
Light level of
SLs

None Simulations

Freely
controlled
+
individual
or group
controlled

Up to 60%

Time-series
forecast:
predict
traffic flow

Not
specified

Previous traffic flow
data

Predict traffic
flow for the
upcoming 15
min

Lamp
brightness
adjusted
based on
traffic flow

Simulations

Group
controlled
+ step
dimming

30% energy
reduction
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5.9.2. Fuzzy Logic Controller

Derived from the approximate and fuzzy way of human reasoning, fuzzy logic, first founded by Zadeh et al. , is

used to handle the concept of partially true and partially false values . It uses a fixed set of linguistic IF-THEN

rules derived from expert knowledge to control non-linear and complex systems. The basic structure of a FLC is

shown in Figure 5—it primarily consists of a fuzzifier, a decision-making block (i.e., rules and inferences), and a

defuzzifier. In addition, it contains a knowledge base which contains the used IF-THEN rules and membership

functions.

PaperNN
Application Type of NN Inputs Outputs Intermediate

Controller
System
Validation

Dimming
Profile

Energy
Savings

Image
processing

CNN Video images

Bounding
boxes, along
with their
class labels
and class
probabilities

Lamps turn
ON if there is
a detection

Simulations +
small
prototype

Two
steps
(on/off)

30% energy
savings

Multivariate
time-series
forecast:
predict
energy
generation

LSTM
Historical data on
weather comprising
11 features

Predict the
hourly PV
panel energy
generation
for the
upcoming 5
days

Brightness
coefficients
for the
upcoming 5
nights are
calculated
based on the
forecast
results

Meteorological
prototype

Freely
controlled

Battery
charge
always
maintained
above 30%

Control
lamps

FFNN
Meteorological data
comprising nine
inputs

Light level of
SLs for the
upcoming 24
h

None Simulations

Freely
controlled
+
individual
or group
controlled

Not
specified

Univariate
time-series
forecast:
predict
traffic flow

FFNN
Previous 8 h historic
traffic flow data

Traffic flow
for the
upcoming 1
h

A linear
function
converts
predicted
traffic to
corresponding
light levels

Simulations

Two
steps +
freely
controlled

Up to 50%

Univariate
time-series
forecast:
predict
traffic flow

FFNN
Previous 24 h
historic traffic flow
data

Traffic flow
for the
upcoming 1
h

A downgrade
by two
classes or
one class
occurs if
normalized
traffic flow
decreases by
25% or 50%,
according to
the EN 13201

Simulations

Step
dimming
(EN
classes)

Up to 40%
energy
reduction

Process
data

FFNN Four inputs
comprising arm
length, mounting
height, inter-distance
between lamps and

Inferences
from
previously
acquired
data

Fuzzy logic
controller

Implemented
in a residential
area

Step
dimming
+ zoning
with two
levels
(on/off)

Power
consumption
reduced by
13.5%
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Figure 5. Sequential workflow of key processes in an FLC framework.

In the context of SSL, FL is primarily used to control lamp brightness, or can be used for data aggregation or even

in some cases for forecasting.

The inputs to the FL-based SSL system are usually the crisp sensor readings which are fuzzified to fuzzy linguistic

sets using membership functions. Then the control is achieved by using the IF-THEN rules linking between the

input and output fuzzy sets. The output in a SSL system corresponds normally to the dimming or light level

expressed linguistically, which is defuzzified back to a crisp value to control the lamps brightness. For instance, in

, the system employs a fuzzy rule-based system to dynamically control SL intensity. The system adjusts lamp

intensity based on factors such as time of day, month of the year, weather conditions, and detected traffic. The

fuzzy system operates on the principle of maximum operator for aggregation, ensuring precise decisions across

varied input combinations. The output represented by nine liguistic variables, is defuzzified using the center of area

method and transmitted to a cluster of SLs. In Altun et al.’s  research, a FLC adjusts light intensity, taking into

account the measured light level and battery’s state of charge. Similarly, Wadi et al. , employed a FLC using

battery level and wind speed as inputs, each characterized by three linguistic variables. The system’s output was

computed using the Mamdani method and center of gravity for defuzzification. In another research, Qian et al. ,

applied two Mamdani FLCs to manage the brightness and color temperature of SLs. The system took readings

from temperature, air quality, and humidity sensors. As these sensor readings increased, the controllers were

designed to inversely adjust both the color temperature, and brightness. This setup allowed maintaining optimal

lighting conditions while maximizing energy efficiency.

Coupled with computer vision, Belan et al. , implemented a FLC to control the dimming level of SLs. They used

two inputs for the FLC: ambient light and pedestrian volume. The system used a combination of HOG and SVM to

process camera-obtained frames for pedestrian presence near light poles. The system employed seven linguistic

variables for the ambient light and dimming output, while pedestrian traffic used six linguistic variables. The Takagi-

sugeno was choosen as an inference method. Junjian et al.  implemented a multi-engine fuzzy inference

system for SL brightness control, using various parameters such as traffic flow, ambient brightness, and humidity to

determine the relative power output of SLs. A joint decision module aggregated the outputs, ensuring the calculated

relative power remained within the specified range. On the other hand, Maohua et al.  optimized their FL

PaperNN
Application Type of NN Inputs Outputs Intermediate

Controller
System
Validation

Dimming
Profile

Energy
Savings

normalized sensor
values

Predict
power from
luminosity
level and
vice-verse

Two
FFNNs

FFNN1: power
consumption;FFNN2:
luminosity level

FFNN1:
luminosity
level;
FFNN2:
power
consumption

None Prototype

Step
dimming
+ group
control

Up to 25%

Univariate
time-series
forecast:
predict
traffic flow

FFNN
Previous 24 h
historic traffic flow
data

Traffic flow
for the
upcoming 1
h

Fuzzy logic
controller

Simulations

Freely
controlled
+ group
controlled

Battery
charge
always
maintained
above 30%
even in
worst case
scenarios

Multivariate
time-series
forecast:
traffic flow
prediction

FFNN,
LSTM

Previous 48 h
historic traffic data
including traffic
volume, speed, and
occupancy rate

Traffic flow
for the
upcoming 1
h

Fuzzy logic
controller

Simulations

Freely
controlled
+ group
controlled

Saves up to
58%

Multistep
multivariate
time-series
forecasting:
solar
irradiance
prediction

FFNN,
LSTM,
GRU,
CNNLSTM

Previous 7-days
hourly weather data
comprising:
temperature, wind
speed, wind
direction, solar
irradiance

Hourly
irradiace
values for
the
upcoming 3
days

Fuzzy logic
controller

Simulations

Freely
controlled
+ group
controlled

Battery
charge
always
maintained
above 90%
even in
worst case
scenarios
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system using a lookup table, focusing on sensor voltage deviation and change rate as inputs, and employing the

max-min method and weighted average for rule inferences. This approach facilitated real-time adjustments of lamp

brightness in accordance with natural light conditions, enhancing the system’s overall performance and

responsiveness. In a series of studies by Agramelal et al. , a FLC was progressively enhanced for

optimizing streetlamp brightness. Initially, the FLC used forecasted traffic flow and battery levels as inputs. Later,

expected solar irradiance was incorporated, initially for a one-day forecast and subsequently extended to three

days. Additionally, the FLC output was refined to match the road surface illuminance level, ensuring compliance

with CIE regulations.

Prior works have predominantly used a fixed set of membership functions and IF-THEN rules, some have explored

more adaptive approaches. For instance, Volosencu et al. , introduced a two-step control system which

involves a high-level light control unit overseeing multiple lower-level Zone Lighting Coordination Units (ZLCUs).

Each ZLCU implements its own FLC with default day-to-day fuzzification parameters. The inputs are the

aggregated readings of lux-meters and presence sensors, and the output is the dimming level satisfying light

constraints of each ZLCU. The light controller unit, a knowledge-based system, dynamically adjusts the fuzzy

parameters of each ZLCU, including membership functions and IF-THEN rules, to accommodate unexpected or

scheduled city events, providing greater flexibility and adaptability. The adaptability of such systems can be further

enhanced by incorporating data-driven learning processes. For example, in Mohandas et al. , an ANN

processed input data, and the FLC then determined the light level to either dim, low, or high. Elejost et al. ,

used a Sugeono-type Adaptive Neural-based Fuzzy Inference System (ANFIS), to obtain a set of IF-THEN rules

that can be integrated into sensor nodes with low computational capabilities. The inputs to the proposed model

were light intensity, twilight threshold, pedestrian flow, daytime and location. The outputs were the dimming

graduation and an alert signal for abnormal situations. The model was simulated using Matlab fuzzy logic toolbox,

with the use of a combination between BP and least-squares to train the proposed system.

FL can also be applied to predict pedestrian pathways, as demonstrated in the study by Kim et al. ; their

system controls SL brightness by tracking pedestrian locations and motion vectors. Employing both fuzzy logic and

neural networks in parallel, the system selects the most suitable approach based on data properties, with the fuzzy

system outperforming in low-data situations. A summary of select studies implementing fuzzy logic in SL control is

provided in Table 6.

Table 6. Related works on control methods employing fuzzy logic.

[44][86][126]

[149]

[122]

[150]

[151]

PaperInference
Methods Inputs

Input’s
Membership
Functions

Aggregation
Method Outputs

Output’s
Membership
Function

DeffuzificationSystem
Implementation

Dimming
Profile

Energy
Savings

Mamdani
Weather
and Time

Triangular
Maximum
operator

Brightness
level

Trapezoidal
Center of
gravity

Simulations

Freely
controlled
+ group
controlled

Up to 50%[142]
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5.9.3. Multi-Agent Systems-Based Control

Multi-Agent Systems (MAS), can provide a flexible, distributed solution where individual agents can autonomously

control specific SLs or clusters, making intelligent decisions based on a variety of environmental factors and

PaperInference
Methods Inputs

Input’s
Membership
Functions

Aggregation
Method Outputs

Output’s
Membership
Function

DeffuzificationSystem
Implementation

Dimming
Profile

Energy
Savings

Two
Mamdani
inference
methods

Humidity,
temperature,
air quality,
illuminance

Unspecified

Maximum
operator for
both
inference
methods

Brightness

level

CCT

Unspecified

Centroid

for

brightness

Bisector

for CCT

Simulations

Group
controlled
+ freely
controlled
+ CCT

Unspecified

Three
Mamdani
inference
methods

Traffic flow,
ambient
brightness
and humidity

Triangular Unspecified
Relative
output power

Triangular
and
trapezoidal

Center of
gravity

Simulations
Freely
controlled

Up to 69%

Mamdani

Light level,
state of
charge of
battery

Triangular Unspecified Light intensity Triangular Unspecified Simulations
Freely
controlled

24%
energy
savings

Takagi-
sugeno

Ambient
light,
pedestrian
volume

Triangular Unspecified
Dimming
level

Triangular Unspecified Simulations
Freely
controlled

44%
energy
savings

Mamdani

Light level,
voltage
deviation
and change
rate

Triangular
Max-min
method

Light intensity Unspecified
Weighted
average
method

Simulations +
prototype

Step
dimming

Unspecified

Mamdani
Battery
level, wind
speed

Triangular Unspecified Light intensity Triangular
Center of
gravity

Simulation
Freely
controlled

Not
specified

Mamdani

Aggregated
readings of
lux-meters
and
presence
sensors

Triangular
and
trapezoidal

Min-max
Dimming
level

Triangular
and
trapezoidal

Centroid
method

Simulations
Freely
controlled

Unspecified

Sugeono-
type
ANFIS

Light
intensity,
twilight
threshold,
pedestrian
flow,

Bell-shaped Maximum Dimming

level

Alert

signal for

Unspecified Weighted
average
method

Test bed Freely
controlled

Up to 40%
energy
savings
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operational conditions.

Integrating both hardware and software agents has been demonstrated to enhance SSL adaptability and

intelligence. Klimek et al. , introduced a context-aware system composed of diverse agents, each with specific

tasks. These agents, including Lamp, Sensor, User, Light, Decision-Making, and Context Interference, work

together to deliver light control. The Decision-Making agent, acting as the central controller within the Segment

Controller, instructs Light agents to react to control data and adjust to context changes reported by the local context

manager. The system also incorporates an Intelligent Agent platform in the central unit that handles context

integration and abstraction, deriving higher-level, application-relevant context from lower-level data. A followup

work by the same authors , showcased a versatile MAS design that allows varied lamp controls, from simple

on-off switches to light intensity adjustments based on time and conditions. It even permits the creation of

individual rules for lamps situated in areas requiring special caution, such as pedestrian crossings or schools.

Casavola et al.  developed a Multi-Agent System (MAS) for optimizing SL and traffic management in urban

areas, using a reputation-based mechanism. The system autonomously controls SL brightness in specific urban

road segments, adjusting to real-time traffic conditions. A hybrid traffic model estimates vehicle numbers in each

road segment. Agents, selected based on a distributed reputation mechanism, identify sensors with the highest

informative content or quality of service. The proposed approach demonstrated significant energy savings,

effectively identifying the most informative sensors based on shared reputation among agents. In the approach

developed by Escolar et al. , WSN equipped SL, acts as an autonomous agent that continuously monitors and

responds to changes in its environment. These agents were programmed using AgentSpeak (L); the agents are

configured with a set of BDIs, each identified into three distinct types: data collectors, sink nodes, and cluster

heads. Data collector nodes were responsible for adjusting light intensity based on pedestrian presence and light

readings. Depending on the conditions, the lighting could be set to high, medium, low, or even off, enabling energy

savings. The simulations using SAMSON and JASON frameworks, provided information on the time spent by each

lamppost in each intensity state, from which energy savings were estimated against non-adaptive approaches. The

decision-making process of BDI agents operates like a finite state machine.

Alternate decision-making processes can be grounded in ANNs, enabling agents to learn from their experiences

and adapt their behavior over time. A particularly noteworthy approach involves integrating evolutionary NNs with

MAS, a method that allows the system to adapt and evolve over time, thereby optimizing its performance.

The study of Nascimento et al. , introduced a MAS with embodied agents, consisting of physical components

like microcontrollers, sensors, and actuators. These agents use a NN for decision-making, allowing each agent to

independently learn and adjust its weights based on its environment. They employ an evolutionary algorithm to

select the fittest agent, optimizing the system’s performance. Each embodied agent uses a three-layer FFNN. The

NN inputs encompass motion and light sensor signals, messages from neighboring agents, and future-oriented

feedback signals. Outputs include feedback signals, transmission to other lamps, and light level adjustments.

Agents were trained in a simulation environment for easier hardware implementation, using a fitness function that

factors in energy consumption, completed routes before simulation termination, and total travel time. Post-

PaperInference
Methods Inputs

Input’s
Membership
Functions

Aggregation
Method Outputs

Output’s
Membership
Function

DeffuzificationSystem
Implementation

Dimming
Profile

Energy
Savings

daytime,
location

abnormal

situations

Mamdani-
sugeono

Traffic flow,
battery
energy level

Triangular Min-max Light level Triangular
Centroid
method

Simulations

Freely
controlled
+ group
controlled

Battery
charge
maintained
above 30%

Mamdani-
sugeono

Traffic flow,
battery
energy level,
solar
irradiance
for the
upcoming
one day

Triangular Min-max Light level Triangular
Centroid
method

Simulations

Freely
controlled
+ group
controlled

Saves up
to 58%

Mamdani-
sugeono

Traffic flow,
battery
energy level,
solar
irradiance
for the
upcoming
three days

Triangular Min-max
Illuminance
level

Triangular
Centroid
method

Simulations

Freely
controlled
+ group
controlled

Battery
charge
maintained
above 90%
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evolution, the agents were programmed into an Arduino using pre-determined NN weights. Real-world tests using

three Arduino cards validated the simulation results by accurately reflecting the physical agents actions. In another

work , the authors enhanced their previous work using the Feature Deselective NeuroEvolution of Augmenting

Topologies algorithm (FD-NEAT) to optimize neural networks by eliminating non-useful features and adjusting

connections. They also introduced a human-in-the-loop approach, allowing manual intervention for managing IoT

agents’ variability and automatic feature reconfiguration based on environmental changes.

Other studies, adopted FL as a decision-making process within MAS for SL management. For instance, Moghadam

et al. , created an energy-efficient system using a hierarchical holonic MAS. Here, the head agents calculated

optimal lamp operation times using geographical and climatic factors, while learner agents controlled the lighting

using a fuzzy inference engine. Their experiment on a small traffic network demonstrated significant energy

reductions. Similarly, Kviesis et al. , developed a SSL control framework using a MAS that communicated with a

cloud-based central control system. The system employed an adaptive fuzzy logic rule block in a cost-effective

FPGA for decentralized control, enabling self-adaptation and learning based on weight change commands from the

cloud. Such agent-cloud interactions optimized the lighting control.

While there have been considerable advancements in the use of MAS for SL control, the application of

reinforcement learning in this context seems underexplored. Reinforcement learning could potentially introduce

significant improvements by enabling agents to learn from their experiences and adjust their actions based on

rewards and penalties. Future research could focus on integrating reinforcement learning within the MAS

framework to harness these potential benefits. Table 7 provides an overview of the employed light schemes for

each reviewed paper.

Table 7. Related works on control methods employing Multi-Agent Systems.

[157]

[158]

[159]

PaperEnergy
Source Used Sensors Used

Lamps
System
Implementation

Dimming
Profile Energy Savings

Power
Grid

Camera, noise
sensor

LED and
HPS

Simulations
Two steps +
freely
controlled

70% savings

Grid

Electrical
measurement,
presence,
temperature, light

Unspecified Simulations

Two steps +
group
controlled +
step
dimming

Unspecified

Power
grid

PIR, light sensor,
velocity sensor

Unspecified Simulations

Two steps +
group
controlled +
step
dimming

Unspecified

Power Brightness, motion Unspecified Simulations + Step Unspecified
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5.9.4. Control Based on Other AI Models

Other AI models applied in the context of SL control includes SVM. Chen et al. , present an enhanced dimming

algorithm that uses SVM and directed acyclic graphs for categorizing dimming levels based on factors like light

intensity and traffic flow. To address SVM’s binary classification restriction, the authors employed directed acyclic

graphs for category division and subsequent SVM classification. A multistage timing dimming strategy is also

proposed for energy-saving control.

In Yu Hu et al. , the K-means++ algorithm clusters data concerning light intensity and traffic flow, leading to a

six-category dimming model. This model uses SVM with linear, polynomial, and Gaussian kernel functions for

classification based on a directed acyclic graph. The resulting categories then control the brightness of the

streetlights. While the above-discussed research demonstrates promising utility of SVM in SL control, other

machine learning algorithms such as decision trees, and XGBoost have also shown significant potential in this

field. Somrudee et al.  used an AI platform to predict day-ahead illuminance in a campus setting, applying

machine learning models like gradient boosting, random forest, decision tree, and XGBoost to environmental data.

XGBoost was the most effective, using five parameters: humidity, temperature, air pressure, illuminance, wind

velocity, and timestamp. Despite its efficiency in control based on illuminance predictions, the system ran at full

intensity when illuminance fell below a certain threshold, leading to unnecessary energy usage throughout most of

the night. System efficiency could be enhanced by taking into account the presence of nearby individuals.

6. Miscellaneous Functions

SLs, traditionally employed for illumination, are evolving into multifunctional platforms with the integration of

sensors, communication technologies, and innovative energy solutions. These enhanced capabilities enable SLs to

serve as hubs for connectivity, including Wi-Fi and 5G networks, sources for alternative power such as charging

EVs, monitors for urban environments assessing air quality and weather, and facilitators for parking and security

measures.

PaperEnergy
Source Used Sensors Used

Lamps
System
Implementation

Dimming
Profile Energy Savings

grid prototype dimming

Power
grid

Brightness, motion Unspecified Simulations
Step
dimming

Unspecified

Power
grid

Voltage, light,
presence

LED Simulations
Step
dimming

40% savings

Power
grid

Special quad PIR
sensor; IR sensors;
temperature; light;
humidity; moisture

LED Simulations
Step
dimming

Unspecified

Power
grid

Special quad PIR
sensor; IR sensors;
temperature; light;
humidity; moisture

HPS Simulations
Step
dimming

Paper reports
several energy
consumption
measurements
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-
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Streetlamps and Connectivity

WiFi hotspot: SL as Wi-Fi hotspots provide essential internet access and enhance urban connectivity. This

transformation aligns with the shift towards smart city development, where Wi-Fi-enabled SLs can serve as

integral components of a city’s digital infrastructure. Various studies in the literature highlight the potential of

SLs as Wi-Fi hotspots .

5G or Beyond5G/6G: SLs play a key role in integrating 5G and 6G networks within smart cities, aiding the

high-density base station requirements of these technologies . By leveraging existing SL infrastructure,

including 5G/6G femtocell connectivity for green highway management , cities can achieve an optimal

solution for network deployment. This approach ensures comprehensive coverage, minimizes signal gaps,

and contributes to timely energy re-distribution. Transforming SL into base stations also reduces costs and

visual clutter, enhancing wireless connectivity for various applications. This integration fosters smart city

applications like traffic management, environmental monitoring, and public safety, paving the way for a more

connected and sustainable urban landscape.

Visible Light Communication (VLC) is a technology that enables data transmission through the use of visible

light as the medium. It uses LEDs or other sources of visible light to modulate data signals, and

photodetectors or cameras to receive the transmitted information. This allows for data communication while

simultaneously providing illumination. Building on this technology, advancements in vehicle positioning have

been explored. LED SLs have been used to transmit identification codes with real-world coordinates, which

are received by CMOS image sensors in vehicles, enabling the determination of the vehicle position .

SLs can also transmit information captured by smartphone cameras . These developments in VLC aim to

enhance data rates and immunity to radio frequency interference, particularly in Vehicle-to-Infrastructure

(V2I) and Infrastructure-to-Vehicle (I2V) communications.

Li-Fi technology, a subset of VLC, utilizes LED light for high-speed data communication, offering benefits

such as high-speed internet, two-way communication, and enhanced safety in certain environments .

Integrated with streetlamps, it has been used to improve toll collection systems and provide location-based

services, enhancing navigation and traffic monitoring . This technology faces challenges such as the

inability to penetrate opaque objects and the necessity for a direct line of sight between transmitters and

receivers . Despite these limitations, Li-Fi in SLs presents promising opportunities for smart city

applications and enhanced communication infrastructures.

Streetlamps as a Power Source

In response to the growing demand for battery charging in EVs and personal devices, there is an increasing

need for accessible power sources. SLs present a promising solution as convenient charging points. Various

studies in the literature have proposed innovative solutions for leveraging SLs as EV charging infrastructure 

. Additionally, when stand-alone SLs generate excess energy, this surplus can be used for EV charging or
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re-injected into the electrical grid . These solutions are particularly impactful in remote and humanitarian

settings, where solar-powered SLs can be designed with ground-level AC sockets to provide additional energy

access for communities .

Streetlamps and Parking

SLs, equipped with advanced technologies such as CCD cameras and computer vision techniques, have

become crucial in optimizing urban parking solutions. Mounted cameras on SLs offer real-time insights into

traffic patterns and parking space availability, aiding in the prevention of traffic congestion due to issues like

double-parking . Innovative models have been developed to enhance the accuracy and stability of

parking space detection, using various methods like overlapping and voting mechanisms . Collectively,

these studies demonstrate the growing potential of SLs as multifunctional assets in modern urban planning,

specifically in the facilitation and management of parking.

Streetlamps and Environmental Monitoring

Environmental monitoring has become a prominent application for SLs, reflecting their versatile utility in

contemporary urban life. Special sensors can detect harmful levels of CO  and other pollutants in the air .

These units can also be equipped to measure temperature and humidity, effectively acting as weather stations

. Noise pollution is another area where they can contribute. For safety, these installations can be designed to

notice strange activities and trigger alarms , and even listen for unusual noises like gunshots .

Additionally, they can look for signs of fire or other emergencies using special sensors .

Extended functions of SLs include street sign queries, push-to-talk features, and speakers . Another

exploration involves using footsteps to power streetlamps using the piezoelectric effect, turning everyday

human motion into a valuable energy source for urban lighting . The integration of these auxiliary uses

within SL emphasizes their potential to enhance urban living.
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