Intermittent Fasting with Sports Performance Subjects: Nutrition & Dietetics Contributor: Javier Conde-Pipó, Agustín Mora-Fernandez, Manuel Martinez-Bebia, Nuria Gimenez-Blasi, Alejandro Lopez-Moro, José Antonio Latorre, Antonio Almendros-Ruiz, Bernardo Reguena, Miguel Mariscal-Arcas Intermittent fasting is one of the most popular types of diet at the moment because it is an effective nutritional strategy in terms of weight loss. The effects that intermittent fasting has on sports performance are analyzed. Physical capacities are analyzed: aerobic capacity, anaerobic capacity, strength, and power, as well as their effect on body composition. exercise intermittent fasting sports performance ## 1. Introduction The role that nutrition plays today in the sports performance of athletes is clear. However, in recent years, different dietary patterns and protocols have emerged that have tried to amplify or reduce the adaptations derived from physical exercise to try to achieve an improvement in the athlete's sports performance [1][2][3]. Within these strategies, intermittent fasting has been acquiring special renewed interest due to its supposed effects on health and improvement of body composition in patients with different pathologies of great predominance nowadays. Intermittent fasting is a popular type of dietary pattern based on timed periods of fasting. This dietary protocol focuses on timed fasting/eating periods with different time intervals $\frac{[4][5]}{}$. Despite this recent popularity, currently, its effects on performance do not seem to be clarified. This has special importance in the physical and cognitive performance of those athletes who frequently perform this type of dietary pattern or temporary caloric restrictions, as happens with Islamic athletes during the religious practice of Ramadan [<u>5</u>][<u>6</u>][<u>7</u>] ## 2. Intermittent Fasting with Sports Performance Within the reviewed bibliography, researchers found that the majority highlighted that the subjects were athletes [8] [9][10][11][12][13][14][15][16][17][18][19]. Another did not specify if they were athletes [20], but due to their intervention, it was included, while the rest indicated that the subjects were physically active [21][22][23][24][25]. Most of them showed time-restricted feeding (TRF) with a 16 h fasting window and 8 h feeding window [8][9][10][11] [13][15][18][21][22][23][26]. Other studies analyzed 14/8 fasting during the Ramadan period [11][17][27], while another article analyzed overnight fasting [14]. In addition to this, it should be noted that two studies used more variables in their studies, such as the intake of supplementation in addition to the fasting follow-up, namely hydroxy methyl butyrate (HMB) and two types of whey protein: whey protein concentrate (WPC) and hydrolyzed whey protein (WPH) [23][28]. Another article sought to compare the difference between protein-loaded and carbohydrate-loaded fasting [19]. For the most part, a control group with no fasting and an experimental group performing fasting are identified [22]. Data are shown in **Table 1**, based on performance, specifically aerobic performance, eight articles were included that used different tests, among them: 20 min cycling test [28], 10 km test [10], repeated sprints test [14][25], treadmill test [15], and test at 45% of maximum power [8]. Regarding anaerobic performance, six articles used different tests to evaluate different parameters of the sample such as stress tests [8][10], Wingate test [21][25][28], submaximal exercise [19], repeated sprints test [25], and interval training [19]. Regarding muscular strength and power, eight included studies that evaluated muscular strength through maximal strength and endurance strength tests and power through peak power (PPO) and average power (W) [9][13][17][18][23][24][25][26]. Finally, regarding body composition and health, researchers included the 15 studies that evaluated any body composition variable such as body fat mass, lean mass, and anthropometric folds [8][9][10][13][15][16][17][18][20][22][23][24][27][29][30][31][32]. **Table 1.** Results of IF on aerobic capacity, anaerobic capacity, muscular strength and power, and body composition and health. | No. | Reference and Date | Impact
Index | Type of
Study | Study Size | Duration of
Fasting | Objective of the Study | Parameters
Analyzed | Conclusions | |-----|-------------------------------------|---------------------------------|-------------------|-----------------------------|---------------------------------------|---|--|---| | | | | | Aero | bic capacity | | | | | 1. | Moro T, et al., 2020 ^[8] | 5.159
(IF)
22/88
(Q1) | Experimental | 16 young cyclists | Intermittent
fasting
TRF (16/8) | IF in 4 weeks of
high-level
resistance
training. | Body
composition,
resting
metabolism,
and
performance
tests. | Does not affect performance. | | 2. | Kang J, et
al., 2021
[26] | 3.571
(IF)
57/109
(Q3) | Review | 23
randomized
studies | TRF
fasting | Effects on metabolic and anthropometric parameters. | Strength,
power, and
aerobic
capacity. | Does not reduce aerobic capacity. | | 3. | Tovar AP,
et al., 2021
[10] | 6.706
(IF)
15/90
(Q1) | Experimental | 15 male
runners | Intermittent
fasting
TRF 16/8 | Effects on the performance of endurance runners. | Body
composition,
stress test,
and 10 km
test. | No effect on performance. | | 4. | Aird TP, et al., 2018 | 3.631
(IF)
11/83
(Q1) | Meta-
analysis | 46 studies | NT | To determine the effects of IF on aerobic and anaerobic | Aerobic capacity. | Aerobic
exercise
performance
does not differ | | No. | Reference and Date | Impact
Index | Type of
Study | Study Size | Duration of
Fasting | Objective of the
Study | Parameters
Analyzed | Conclusions | |-----|--|----------------------------------|------------------|-------------------------|---------------------------------------|---|---|---| | | | | | | | exercise performance. | | when following
IF vs. other
nutrition. | | 5. | Terada T,
et al., 2019
[<u>14</u>] | 1.432
(IF)
67/85
(Q4) | Experimental | 20
participants | Overnight fasting | Effects on subjects in sprint training and aerobic capacity. | Aerobic capacity. | Improved sprint fasting vs. carbohydrate abundance. | | 6. | Brady AJ,
et al., 2021
[<u>15</u>] | 6.289
(IF)
9/88
(Q1) | Experimental | 17
participants | Fasting
TRF (16/8) | Effect of 8 weeks
of TRF in
conjunction with
training. | Body
composition,
aerobic
capacity, and
biomarkers. | No alteration in endurance running performance indices. | | 7. | NaHarudin,
et al., 2018
[25] | 2.376
(IF)
29/83
(Q2) | Experimental | 20
participants | Intermittent
fasting | Effect of IF on
high-intensity
exercise,
Wingate test,
and HIIT cycling
test. | Wingate test. | Attenuated performance at the start of practice. | | 8. | Aird TP, et
al., 2021
[28] | 5.900
(IF)
36/146
(Q1) | Experimental | 28 male
participants | Intermittent
fasting | Compare performance and metabolic adaptations of short-term SIT with fasting and with WPH or WPC supplementation. | Body
composition,
aerobic
exercise. | No significant
results. | | | | | | Anaer | obic capacity | | | | | 1. | Moro T, et al., 2020 ^[8] | 5.159
(IF)
22/88
(Q1) | Experimental | 16 young cyclists | Intermittent
fasting
TRF (16/8) | IF in 4 weeks of
high-level
resistance
training. | Body
composition,
resting
metabolism,
and
performance
test. | No effect on performance. | | 2. | Correia JM,
et al., 2021
[21] | 4.614
(IF)
100/279
(Q2) | Experimental | 12 healthy
males | Fasting
TRF 16/8 | Short- and long-
term effects in
trained young
people. | Body
composition
and Wingate
test. | No significant results in terms of performance improvement. | | 3. | Terada T,
et al., 2019
[<u>14]</u> | 1.432
(IF) | Experimental | 20
participants | Overnight fasting | Effects on subjects in sprint | Aerobic capacity. | Improved sprint fasting vs. | | No. | Reference and Date | Impact
Index | Type of
Study | Study Size | Duration of
Fasting | Objective of the Study | Parameters
Analyzed | Conclusions | |-----|---|---------------------------------|------------------|---|-------------------------|---|---|--| | | | 67/85
(Q4) | | | | training and aerobic capacity. | | carbohydrate abundance. | | 4. | Naharudin,
et al., 2018
[25] | 2.376
(IF)
29/83
(Q2) | Experimental | 20
participants | Intermittent
fasting | Effect of IF in high-intensity exercise, Wingate test, and HIIT cycling test. | Wingate test,
Body
composition,
aerobic
exercise. | Attenuated performance at the start of practice. | | 5. | Aird TP, et al., 2021 | 5.900
(IF)
36/146
(Q1) | Experimental | 28 male
participants | Intermittent
fasting | Compare performance and metabolic adaptations of short-term SIT with fasting and with WPH or WPC supplementation. | Aerobic and anaerobic performance. | No significant
results. | | 6. | Rothschild
JA, et al.,
2021 ^[19] | 6.706
(IF)
15/90
(Q1) | Experimental | 17 trained
cyclists and
triathletes | Intermittent
fasting | Effects versus a protein-rich and a carbohydrate-rich meal on cycling performance. | Submaximal exercise, high-intensity exercise. | No difference
versus CHO in
HIIT. Like PRO,
uncompromised
performance in
shorter duration
and higher
intensity
sessions. | | | | | | Muscular s | trength and po | wer | | | | 1. | Moro T, et al., 2016 ^[9] | 3.786
(IF)
30/128
(Q1) | Experimental | 34
participants | TRF (16/8) | Effects during endurance training in healthy males. | Body
composition,
strength, and
biomarkers. | Improvement of
biomarkers
related to
health, fat loss,
and
maintenance of
muscle mass. | | 2. | Kang J, et
al., 2021
[<u>26]</u> | 3.571
(IF)
57/109
(Q3) | Review | 23
randomized
studies | TRF
fasting | Effects on
metabolic and
anthropometric
parameters. | Strength,
power,
aerobic
capacity. | Improvements
in body
composition
and no
alteration in
muscle mass
synthesis. | | 3. | Tinsley
GM, et al., | 2.576
(IF) | Experimental | 18
participants | TRF
fasting | To examine changes in body | Strength and body | Variation in fat mass loss | | No. | Reference and Date | Impact
Index | Type of
Study | Study Size | Duration of
Fasting | Objective of the
Study | Parameters
Analyzed | Conclusions | |-----|--|----------------------------------|-------------------|--|---------------------------------------|--|---|---| | | 2017 ^[13] | 22/81
(Q2) | | | | composition and
strength in
strength training
in males. | composition. | versus diet, but
not in muscle
mass gain. | | 4. | Tinsley
GM, et al.,
2019 ^[23] | 6.766
(IF)
6/89
(Q1) | Experimental | Healthy
women
aged 18–
30 years | TRF
fasting | TRF + HMB in
strength training
vs TRF without
HMB. | Body
composition
and muscle
performance. | TRF did not slow adaptations in hypertrophy and performance vs. other diets. | | 5. | Martínez-
Rodríguez
A, et al.,
2021 ^[24] | 4.614
(IF)
100/279
(Q2) | Experimental | 14 active
women | Intermittent
fasting | Effects of HIIT training and muscular and anaerobic performance. | Body
composition,
grip strength,
jumping,
Wingate
cycling test. | Decreased fat
mass and
increased
jumping
performance. | | 6. | Naharudin,
et al., 2018
(25) | 2.376
(IF)
29/83
(Q2) | Experimental | 20
participants | Intermittent
fasting | Effect of IF in
high-intensity
exercise,
Wingate test,
and HIIT cycling
test. | Wingate test,
Body
composition,
aerobic
exercise. | Attenuated performance at the beginning of practice. | | 7. | Abaïdia
AE, et al.,
2020 [17] | 11.140
(IF)
2/88
(Q1) | Meta-
analysis | 11 studies | Fasting
14/10
(Ramadan) | Effects of 1
month of
Ramadan on
physical
performance. | Aerobic
performance,
maximal
power,
strength,
jump height,
sprints. | No decrease in performance if nutrition is correct. | | 8. | Correia JM,
et al., 2020
[<u>18</u>] | 5.719
(IF)
17/88
(Q1) | Experimental | Individuals
between 18
and 39
years | Intermittent
fasting | Effects on sports performance. | Muscular
strength,
aerobic
capacity,
anaerobic
capacity, and
body
composition. | Positive results in fat mass reduction, without significant results in terms of strength. | | | | | | Body comp | osition and he | alth | | | | 1. | Moro T, et al., 2020 🖺 | 5.159
(IF)
22/88
(Q1) | Experimental | 16 young cyclists | Intermittent
fasting
TRF (16/8) | IF in 4 weeks of
high-level
endurance
training. | Body
composition,
resting
metabolism, | Improved body composition and | | No. | Reference and Date | Impact
Index | Type of
Study | Study Size | Duration of
Fasting | Objective of the
Study | Parameters
Analyzed | Conclusions | |-----|--|---------------------------------|---------------------|---------------------|-------------------------------------|---|---|---| | | | | | | | | and performance testing. | inflammatory
markers. | | 2. | Moro T, et al., 2016 | 3.786
(IF)
30/128
(Q1) | Experimental | 34
participants | TRF (16/8) | Effects during endurance training in healthy males. | Body
composition,
strength, and
biomarkers. | Improved
health, fat loss,
and
maintenance of
muscle mass. | | 3. | Hosseini S,
et al., 2015 | NT | Experimental | 50 healthy subjects | Ramadan | Effects of
Ramadan and
physical activity
on biochemical
parameters. | Body weight,
fat
percentage,
biomarkers. | Reductions in anthropometric parameters, lower cholesterol. | | 4. | Laza V.
2020 ^[29] | NT | Magazine
article | NT | TRF
fasting | Effects on the performance and health of athletes. | Biomarkers,
body
composition. | Decreased blood glucose, body fat, cholesterol, testosterone levels, improved insulin sensitivity, increased hepcidin levels, improved immune system, and maintenance of muscle mass. | | 5. | Zouhal H,
et al., 2020
(<u>30</u>) | NT | Review | 71 studies | ICR, ADF,
and TRF
fasts | Identifying the effects of IF together with physical exercise. | Body
composition,
metabolic
adaptations,
sports
performance. | Decreased circulating insulin levels and improved glucagon levels. Reduction of body fat. | | 6. | Tovar AP,
et al., 2021
[10] | 6.706
(IF)
15/90
(Q1) | Experimental | 15 male
runners | Intermittent
fasting
TRF 16/8 | Effects on the performance of endurance runners. | Body
composition,
stress test,
and 10 km
test. | Improvements
in fat mass
reduction and
muscle mass
maintenance. | | 7. | Isenmann
E, et al., | 6.706
(IF) | Experimental | 35 subjects | TRF 16/8 | Effects on body composition and | Weight, fat
mass, BMI. | Improvements in weight, body | ## References 1. Thomas, D.T.; Erdman, K.A.; Burke, L.M. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J. Acad. Nutr. Diet. 2016, 116, 501–528. | No. | Reference
and Date | Impact
Index | Type of
Study | Study Size | Duration of
Fasting | Objective of the
Study | Parameters
Analyzed | Conclusions | ınd | |-----|---|----------------------------------|------------------|--------------------|-------------------------|--|--|---|-------------------| | | 2021 [22] | 15/90
(Q1) | | | | adherence. | | composition,
BMI, and hip
and waist
circumference. | | | 8. | Haupt S, et al., 2021 | 6.064
(IF)
75/297
(Q2) | Review | NT | TRF 16/8 | Summarize
fasting
information on
metabolic and
hormonal
responses. | | Improvements in blood pressure, insulin sensitivity, and body composition. Increased lipid utilization. | R.;
, 901- | | 9. | El-Outa A,
et al., 2022
[<u>32</u>] | 0.678
(SJR)
(Q2) | Experimental | 80
participants | TRF 16/8 | Assess VO2max
in addition to
other
parameters. | VO2max,
weight, body
composition,
biomarkers. | Reductions in
glucose levels,
LDL, HDL, and
body weight.
No significance
in VO2max. | ng
npetin | | 10. | Tinsley
GM, et al.,
2017 ^[13] | 2.576
(IF)
22/81
(Q2) | Experimental | 18
participants | Fasting
TRF | Examine changes in body composition and strength in strength training in males. | Strength and body composition. | Variation in fat
mass loss vs.
diet, but not in
muscle mass
gain. |)22, 5
neto, | | 11. | Brady AJ,
et al., 2021
[<u>15</u>] | 6.289
(IF)
9/88
(Q1) | Experimental | 17
participants | Fasting
TRF (16/8) | Effect of 8 weeks of TRF together with training. | Body
composition,
aerobic
capacity, and
biomarkers. | Decrease in fat mass. | ports | | 12. | Martínez-
Rodríguez
A, et al.,
2021 [24] | 4.614
(IF)
100/279
(Q2) | Experimental | 14 active
women | Intermittent
fasting | Effect of HIIT training and muscular and anaerobic performance. | Body
composition,
gripper
strength,
jumping,
Wingate
cycling test. | Decrease in fat
mass. | sm,
ance- | | 13. | Naharudin,
et al., 2018
[<u>25]</u> | 2.376
(IF)
29/83
(Q2) | Experimental | 20
participants | Intermittent
fasting | Effect of IF on
high-intensity
exercise,
Wingate test,
and HIIT cycling
test. | Wingate test,
body
composition,
aerobic
exercise. | Attenuated performance at the beginning of practice. | at
)-
Healt | of the Athlete: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 4240. - 12. Aird, T.P.; Davies, R.W.; Carson, B.P. Effects of fasted vs fed-state exercise on performance and post-exercise metabolism: A sys-tematic review and meta-analysis. Scand. J. Med. Sci. Sports 2018, 28, 1476–1493. - 13. Tinsley, G.M.; Forsse, J.S.; Butler, N.K.; Paoli, A.; Bane, A.A.; La Bounty, P.M.; Morgan, G.B.; Grandjean, P.W. Time-restricted feeding in young men performing resistance training: A randomized controlled trial. Eur. J. Sport Sci. 2017, 17, 200–207. | No. | Reference and Date | Impact
Index | Type of
Study | Study Size | Duration of
Fasting | Objective of the
Study | Parameters
Analyzed | Conclusions | |-----|--|--------------------------------|------------------|--|-------------------------------|--|---|---| | 14. | Hammouda
O, et al.,
2013 ^[16] | 3.534
(IF)
8/55
(Q1) | Experimental | 15 soccer
players | Fasting
14/10
(Ramadan) | Effects of
Ramadan on
lipoprotein
fluctuation during
exercise. | Body
composition,
biomarkers. | Reductions in fat mass and LDL without affecting muscle mass and increase in HDL (significant reduction in YO-YO test). | | 15. | Correia JM,
et al., 2020
[<u>18</u>] | 5.719
(IF)
17/88
(Q1) | Experimental | Individuals
between 18
and 39
years old | Intermittent
fasting | Effects on sports performance. | Muscle
strength,
aerobic
capacity,
anaerobic
capacity, and
body
composition. | Positive results
in fat mass
decrease, no
significant
results in
strength. | - 18. Correia, J.M.; Santos, I.; Pezarat-Correia, P.; Minderico, C.; Mendonca, G.V. Effects of Intermittent Fasting on Specific Exercise Per-formance Outcomes: A Systematic Review Including Meta-Analysis. Nutrients 2020, 12, 1390. - 19. Rothschild, J.A.; Kilding, A.E.; Broome, S.C.; Stewart, T.; Cronin, J.B.; Plews, D.J. Pre-Exercise Carbohydrate or Protein Ingestion Influences Substrate Oxidation but Not Performance or Hunger Compared with Cycling in the Fasted State. Nutrients 2021, 13, 1291. - 20. Cherif, A.; Meeusen, R.; Farooq, A.; Briki, W.; Fenneni, M.A.; Chamari, K.; Roelands, B. Repeated Sprints in Fasted State Impair Reaction Time Performance. J. Am. Coll. Nutr. 2017, 36, 210–217. - 21. Correia, J.M.; Santos, I.; Pezarat-Correia, P.; Minderico, C.; Schoenfeld, B.J.; Mendonca, G.V. Effects of Time-Restricted Feeding on Supramaximal Exercise Performance and Body Composition: A Randomized and Counterbalanced Crossover Study in Healthy Men. Int. J. Environ. Res. Public Health 2021, 18, 7227. - 22. Isenmann, E.; Dissemond, J.; Geisler, S. The Effects of a Macronutrient-Based Diet and Time-Restricted Feeding (16:8) on Body Composition in Physically Active Individuals—A 14-Week Randomised Controlled Trial. Nutrients 2021, 13, 3122. - 23. Tinsley, G.M.; Moore, M.L.; Graybeal, A.J.; Paoli, A.; Kim, Y.; Gonzales, J.U.; Harry, J.R.; VanDusseldorp, T.A.; Kennedy, D.N.; Cruz, M.R. Time-restricted feeding plus resistance training in active females: A randomized trial. Am. J. Clin. Nutr. 2019, 110, 628–640. - 24. Martínez-Rodríguez, A.; Rubio-Arias, J.A.; Frutos, J.M.G.-D.; Vicente-Martínez, M.; Gunnarsson, T.P. Effect of High-Intensity Interval Training and Intermittent Fasting on Body Composition and Physical Performance in Active Women. Int. J. Environ. Res. Public Health 2021, 18, 6431. - 25. Naharudin, M.N.B.; Yusof, A. The effect of 10 days of intermittent fasting on Wingate anaerobic power and prolonged high-intensity time-to-exhaustion cycling performance. Eur. J. Sport Sci. 2018, 18, 667–676. - 26. Kang, J.; Ratamess, N.A.; Faigenbaum, A.D.; Bush, J.A.; Beller, N.; Vargas, A.; Fardman, B.; Andriopoulos, T. Effect of Time-Restricted Feeding on Anthropometric, Metabolic, and Fitness Parameters: A Systematic Review. J. Am. Nutr. Assoc. 2022, 41, 810–825. - 27. Hosseini, S.; Hejazi, K. Evaluation of Changes in Blood Hematological and Biochemical Parameters in Response to Islamic Fasting and Regular Physical Activity in Male and Female Subjects. J. Fasting Health. 2015, 3, 118–125. - 28. Aird, T.P.; Farquharson, A.J.; Bermingham, K.M.; O'sulllivan, A.; Drew, J.E.; Carson, B.P. Divergent serum metabolomic, skeletal muscle signaling, transcriptomic, and performance adaptations to fasted versus whey protein-fed sprint interval training. Am. J. Physiol. Metab. 2021, 321, E802–E820. - 29. Laza, V. Intermittent fasting in athletes: PROs and CONs. Health Sports Rehabil. Med. 2020, 21, 52–58. - 30. Zouhal, H.; Saeidi, A.; Salhi, A.; Li, H.; Essop, M.F.; Laher, I.; Rhibi, F.; Amani-Shalamzari, S.; Ben Abderrahman, A. Exercise Training and Fasting: Current Insights. Open Access J. Sports Med. 2020, 11, 1–28. - 31. Haupt, S.; Eckstein, M.L.; Wolf, A.; Zimmer, R.T.; Wachsmuth, N.B.; Moser, O. Eat, Train, Sleep-Retreat? Hormonal Interactions of Intermittent Fasting, Exercise and Circadian Rhythm. Biomolecules. 2021, 11, 516. - 32. El-Outa, A.; Ghandour, L.; Hamade, H.; Borgi, C.; Fares, E.-J.; Gherbal, T.; Mufarrij, A. Intermittent fasting & performance: The iFast clinical trial protocol. Contemp. Clin. Trials Commun. 2021, 25, 100766. Retrieved from https://encyclopedia.pub/entry/history/show/121295