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Specific Learning Disorder (SLD) is a multifactorial, neurodevelopmental disorder which may involve persistent

difficulties in reading (dyslexia), written expression and/or mathematics. Dyslexia is characterized by difficulties with

speed and accuracy of word reading, deficient decoding abilities, and poor spelling. Several studies from different,

but complementary, scientific disciplines have investigated possible causal/risk factors for SLD. Biological,

neurological, hereditary, cognitive, linguistic-phonological, developmental and environmental factors have been

incriminated. Despite worldwide agreement that SLD is highly heritable, its exact biological basis remains elusive.
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1. Introduction

Specific Learning Disorder (SLD) is a complex disorder with varying manifestations and considerable differences in

interpersonal characteristics, albeit present worldwide. According to DSM-5 and the National Joint Committee on

Learning Disabilities (NJCLD), SLD is a general term that refers to a group of disorders , which may involve

difficulties in reading (dyslexia), written expression (dysgraphia) and/or mathematics (dyscalculia), albeit not

accounted for by low intelligence (IQ), sensory acuity (visual problems), poor learning opportunities, or

developmental delay (e.g., intellectual disability). Learning disabilities may co-occur with the aforementioned

impairments, but are not the result of these conditions .

The prevalence of SLD varies between 3–12% among the general population, depending on factors such as

stringency of measurement cut-offs used for identification , country and level of phonological transparency of

the spoken language, sex (male:female ratio 2–3.7:1) , age of assessment, different theoretical perspectives

as regards causality, and assessment tools criteria used . DSM-5 describes SLD as a neurodevelopmental

disorder with a biological origin, which includes an interaction of genetic, epigenetic, and environmental factors.

SLD is readily apparent in the early school years in most individuals; symptoms are usually detected when

students show a learning profile which is qualitatively lower than their chronological and mental age. However, in

some cases, difficulties may become obvious at a later age, when the academic demands rise and exceed the

individual’s limited capacities, for example during adolescence or adulthood . SLD is a lifelong disorder; its

impact can have undesirable outcomes for children, as well as for older individuals, on educational, social, financial

and occupational level.

Several studies originating from different scientific fields have tried to investigate the possible causal and/or risk

factors of SLD. Neurological-neuroanatomical, biological (genetic, epigenetic), cognitive-information processing,
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linguistic-phonological, developmental and environmental factors have been incriminated. However, until presently,

scientific communities worldwide have not come to an agreement as regards to the exact causes and nature of

SLD, neither have they agreed to a commonly accepted definition . Issues of comorbidity make differential

diagnosis an even more complicated task . Arithmetic, reading, or spelling deficits are common in cases with

already existing problems in one academic domain compared to the general population ; increased dyscalculia

rates are observed in families of children with dyslexia . Additionally, dysgraphia rarely occurs alone and

frequently co-occurs with dyslexia . Moreover, it is not uncommon for individuals with SLD to show symptoms of

Attention-Deficit/Hyperactivity Disorder (ADHD), Specific Language Impairment (SLI), motor-coordination

deficiencies, emotional-behavioral difficulties, anxiety, depression, personality disorders, or other conditions; it is

not clear whether these conditions comorbid with SLD as simultaneous disorders or are secondary problems

deriving from the ongoing academic failure. Nevertheless, each year, a considerable number of children and

adolescents as well as adults are referred to diagnostic centers seeking help with their learning difficulties .

From the genetics perspective, SLD is a complex disorder with a strong genetic component; heritability estimates

from family and twin studies vary between 40–70% (h  = 0.52 for dyslexia and 0.61 for dyscalculia) .

Moreover, reading-related abilities such as word recognition, phoneme awareness, orthographic choice, and

phoneme decoding have shown significant heritability estimates above 50% . These high heritability estimates

were calculated based on twin studies; a proportion of this genetic component can be attributed to common

variants of the human genome, such as single nucleotide polymorphisms (SNPs). According to the latest genome-

wide association study (GWAS) on dyslexia, SNP-based heritability yielded an estimate of 20% or 25%, assuming

a dyslexia prevalence of 5% or 10%, respectively . The remaining of the genetic risk or “missing heritability” of

dyslexia could be potentially explained by other types of genomic variants, such as copy number variants (CNVs)

and rare variants. The identification of the latter type of variants requires different methodological and analytical

approaches, such as massive parallel deep sequencing, also known as next-generation sequencing (NGS).

2. Exploring Genetic Susceptibility to SLD—The Early Times

SLD appears to aggregate in families; the relative risk of SLD in reading or mathematics is substantially higher (4–

8 times and 5–10 times higher, respectively) in first-degree relatives of individuals with these learning difficulties 

. Family history of reading difficulties and parental literacy skills, as well as mathematical difficulties, predict

literacy problems or SLD in offspring, indicating the combined role of genetic and environmental factors .

Back when the first efforts to determine the genetic basis of dyslexia started to appear in the literature (Table 1),

the disorder was assumed to follow an autosomal dominant inheritance pattern with high, but incomplete,

penetrance . In the next two decades, it became clear that SLD, and specifically dyslexia, is a complex

disorder with marked genetic heterogeneity, as manifested by the identification of at least nine genetic loci spread

throughout the genome (Table 1).

Clues into the genetic underpinnings of reading-related traits originally emerged from classical, hypothesis-free,

genome-wide linkage screens, linkage analysis in well-phenotyped pedigrees with multiple affected cases, or the

detection of rare chromosomal aberrations (mostly translocations) in dyslexic individuals, likely disrupting a
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susceptibility locus. Owing to the prior view of dyslexia as an autosomal dominant disorder, Online Mendelian

Inheritance in Man curates these earlier reports . Briefly, more than nine loci have been identified as candidates

for susceptibility to SLD, with several genes, particularly DYX1C1, ROBO1, KIAA0319, and DCDC2, repeatedly

linked to the disorder and/or measures of reading processes disturbed in dyslexia. Overall, many excellent reviews

have covered the earlier efforts to unravel the genetic component of dyslexia . Thus, instead of

presenting a redundant text herein, we have compiled the seminal studies that led to the identification of dyslexia-

associated genes and loci in Table 1. Apart from the categorical diagnosis, we have also recorded quantitative

traits often used as proxies (or endophenotypes) to address the general dyslexia phenotype. This is a common

approach successfully used to draw closer to the underlying genetic deficit in complex phenotypes . However,

the correlation between these endophenotypes and genetic susceptibility markers is far from optimal, since either

the same locus has been associated with different SLD-related traits in different studies , or the same

quantitative trait has shown marked genetic heterogeneity (Table 1).

Following up on gene mapping, a significant number of studies explored associations between specific variants in

candidate susceptibility genes and SLD domains or related traits; we summarize the data in Table 2. Then, for the

rest of the review, we focus on the latest advances in the field, considering the shift in the analytical approaches

used, driven by the advent of high-throughput genotyping technologies and NGS. We discuss the most recent

studies in the text and provide a compilation in Table 3.

Less is known about the genetics of mathematical abilities or written expression skills, with few genetic studies

conducted thus far (Table 1, Table 2 and Table 3). In nearly half of SLD cases, dyslexia and dyscalculia co-occur

. This co-occurrence is more frequent than expected by chance and could be partially attributed to shared

genetic influences, according to the “generalist genes” hypothesis . However, there are still very limited

genetic data to support such shared genetic influences .

Table 1. Earlier studies (1993–2013) presenting evidence for association of genomic loci with SLD and/or related

traits.
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Phenotype Domain/Trait Locus (Gene(s)) Means of Identification Reference

 
Classical DYX loci

  

Dyslexia/SWR 15q15-q21 (DYX1) Locus-specific linkage analysis

Severe dyslexia/PA 15q21 (DYX1C1) Chromosomal translocation

Dyslexia/PA 6p22-p21 (DYX2) Locus-specific linkage analysis
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Phenotype Domain/Trait Locus (Gene(s)) Means of Identification Reference

Dyslexia 6p22 (KIAA0319, DCDC2)
Linkage analysis and

association

Dyslexia 6p22 (KIAA0319)
Linkage analysis and

association

Reading disability 6p22 (KIAA0319) Linkage disequilibrium mapping

Severe dyslexia 6p22-p21 (DCDC2) Linkage disequilibrium mapping

Dyslexia/RAN 6p21 (separate from DYX2) Genome-wide linkage scan

Dyslexia 2p16-p15 (DYX3) Genome-wide linkage scan

Dyslexia 2p (DYX3) Locus-specific linkage analysis

Dyslexia/word- and non-

word reading, RAN
2p (DYX3) Locus-specific linkage analysis

Dyslexia 2p12 (MRPL19, C2orf3) Linkage disequilibrium mapping

Spelling 6q11.2-q12 (DYX4) Genome-wide linkage scan

PA, naming speed, verbal

short-term memory

3p12-q13 (DYX5) Genome-wide linkage scan

3p12 (ROBO1) Chromosomal translocation

SWR, PA (reading-related

processes)

18p11.2 (DYX6) Genome-wide linkage scan
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Phenotype Domain/Trait Locus (Gene(s)) Means of Identification Reference

Dyslexia (QTL-based)

18p11.2-q12.2
Locus-specific linkage analysis

and association

(MC5R, DYM, NEDD4L)
  

Dyslexia 11p15.5 (DYX7)
Linkage analysis and

association

Severe dyslexia/speech

development
1p22 Chromosomal translocation

Dyslexia 1p36-p34 (DYX8) Chromosomal translocation

Dyslexia/RAN 1p (DYX8) Locus-specific linkage analysis

Dyslexia/spelling 1p36-p34 (DYX8)
Genome-wide linkage scan

(QTL-based)

Dyslexia/word- and non-

word reading, RAN
1p36 (DYX8) Locus-specific linkage analysis

Dyslexia Xq27.3 (DYX9) Genome-wide linkage scan

Dyslexia
 

SNP-based linkage analysis

 
Other loci and genes
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 Genomic loci as presented in the original corresponding article. SWR: single-word reading, PD: phonological

decoding, RAN: rapid automatized naming, PA: phonological awareness, GWAS: Genome-Wide Association Study.

Table 2. Summary of association studies of established or candidate SLD/dyslexia genes.
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SLI: specific language impairment, GWAS: Genome-Wide Association Study, WES: whole exome sequencing,

CNV: copy number variant, SNP: single nucleotide polymorphism.

3. High-Throughput Genome-Wide Analysis Continues to
Shed Light on the Genetic Architecture of SLD
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linkage analysis

(single family)
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(word reading)
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GWA studies are not hypothesis-driven, unlike candidate gene association studies that are designed with specific

questions in mind, interrogating particular genes or genomic loci implicated in specific molecular pathways or

biological processes hypothesized to be involved. Nevertheless, GWAS proved less successful than originally

expected in helping to pinpoint SLD susceptibility loci, partly owing to the heterogeneous dyslexia phenotype and

diagnostic/recruitment criteria used or to the small sample numbers analyzed compared to other

neurodevelopmental/psychiatric phenotypes. Small sample sizes confer low detection power for common variants

with small effect sizes, especially considering the stringent statistical correction for multiple testing over hundreds

of thousands or millions of variants that needs to be taken into account. To compensate, genome-wide screening of

the general population for DNA variants associated with reading, arithmetic and language abilities as heritable traits

attracted intense research interest; these were viewed as ”intermediate phenotypes”, or quantitative traits acting as

endophenotypes, determined by a genetic background that potentially also underlies SLD etiology.

Reading skill as a quantitative trait was explored for the first time by applying a GWAS approach using the

extremes of its continuous distribution. Two groups, low versus high reading ability, comprising a total sample of

1500 children, were genotyped using a low-density SNP microarray (~100 k). Top candidate SNPs showing the

largest allele frequency differences between extreme-ends groups were validated in an independent sample of 900

age-matched children. Of those, ten SNPs showed nominally significant association with continuous variation in

reading ability . Since this seminal effort, a significant number of studies have been conducted, several of which

focused on variants with pleiotropic effects in both reading and language traits (Table 3) . We believe

that the most recent one deserves highlighting for two reasons. First, the authors studied reading disability

predictors, namely RAN and rapid alternating stimulus, in a sample of more than 1300 Hispanic-American and

African-American young individuals. Second, they found, for the first time in a GWAS design, genome-wide

significance for a variant located on the upstream region of a long non-coding RNA (lncRNA) gene, namely

RPL7P34, 30kb upstream of RNLS (10q23.31). It was suggested that this variant resides on an enhancer element

that potentially interacts with an active RNLS transcription start site in the hippocampus, owing to chromatin’s

three-dimensional structure. The variant was further associated with structural variation (cortical volume) in the

right inferior parietal lobule of an independent multi-ethnic sample . Currently, it remains largely unknown how

non-coding regions of the genome may impact reading traits; the identification of variants in gene regulatory

regions, as recently demonstrated for ARHGEF39 in SLI , or the role of post-transcriptional (e.g., miRNA-

based) regulation of gene expression, is undoubtedly an exciting new field of research.

Coming to the context of dyslexia, one of the first GWAS, albeit of a very small scale in comparison to current

standards (200 cases for discovery and 186 for replication, tested for a limited number of markers (300k)),

identified rs4234898 on chromosome 4 as a trans-acting regulatory variant for SLC2A3 which resides on

chromosome 12. SLC2A3 codes for a glucose transporter in neurons, and its reduced expression in

lymphoblastoid cell lines was shown to be significantly associated with the minor rs4234898 allele. It was

suggested that SLC2A3 might act as a susceptibility gene for an electrophysiological endophenotype in dyslexic

children with glucose transport deficits, namely mismatch negativity (MMN) or mismatch response. MMN serves as

a measure for speech perception and automatic speech deviance which has been found impaired in dyslexic
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children . This mismatch response endophenotype was later shown to associate with common variants in

DYX1C1 , unlike common variants in DCDC2 and KIAA0319 .

The largest GWAS for dyslexia-specific traits was recently published, with data generated for almost 3500 reading-

impaired and typically developing children of European ancestry from nine countries speaking six different

languages. Genome-wide significance was observed with RAN for four variants on 18q12.2, within MIR924HG

(rs17663182), and a suggestive association on 8q12.3 within NKAIN3. It is of note that MIR924 is predicted to

regulate candidate dyslexia susceptibility genes like MRPL19 and KIAA0319L, as observed via in silico analysis of

putative miR-924 binding sites . The same group performed a polygenic risk score (PRS) analysis between

eight reading traits and different neuropsychiatric disorders (ADHD, ASD, major depressive disorder and

schizophrenia), educational attainment, and neuroimaging phenotypes (seven brain areas) and found a significant

genetic overlap between some of these reading traits and educational attainment and, to a lesser extent, with

ADHD . This initiative led to an even larger dyslexia case-control GWAS of almost 2300 cases and 6300

controls, a subset of which overlapped with the same authors’ 2019 paper . No novel genome-wide significant

associations emerged at single-marker level; gene-based analysis from the top SNP association signals revealed

VEPH1 (3q25) as a top candidate gene, but no specific pathways showed significant enrichment .

Actually, the first study assessing the reading ability of non-dyslexic children and adolescents with the use of PRS

analysis was published in 2017. The authors in this study utilized GWAS data from >5800 cases and used

educational attainment (=years of education completed) to predict reading performance in English. They calculated

a PRS-heritability estimate of reading ability of almost 5%, based only on common variants. This estimate

represents approximately 7% of the total heritability for reading ability (h  = 70%; 5%/70%) evaluated through twin

studies . However, if calculating the PRS-heritability estimate using an SNP-heritability estimate, which was

shown to account for 22% of the total genetic variance , then the PRS-heritability estimate can explain a

significant 23% (5%/22%) of the genetic variance observed for reading ability, an estimate that remained significant

after accounting for age-specific cognitive ability and family socioeconomic status .

The use of PRSs is a rather young addition to the armor of (statistical) tools to evaluate the genetic component of

complex traits, even more so for complex cognitive skills like reading performance; yet, we can already foresee its

potential. Given its inherent nature (as DNA variants do not change by age), knowing the individual genetic

differences in reading ability perhaps may prove useful in the early prediction of reading problems like dyslexia.

This will require large multicentered initiatives of tens of thousands of participants. However, because language

transparency is an important issue in assessing dyslexia, perhaps large GWAS with participants using the same

language would be powerful enough to explore the applicability of PRS further, an approach already tested by

Gialluisi et al. in their 2019 analysis .

The first GWAS study conducted to exclusively assess mathematical ability and disability was published ten years

ago; two groups of children from the Twins Early Development Study, with high versus low mathematical ability

(600 individuals per group), served as the discovery cohort, and 2356 individuals, spanning the entire distribution of

mathematical ability, were used for validation purposes. Out of 10 top candidate SNPs, rs11225308 (MMP7),
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rs363449 (GRIK1), and rs17278234 (DNAH5) were the variants most significantly associated with mathematical

ability. Because the effect sizes of these 10 SNPs were small, the authors created an ‘SNP-set score’ for each of

the 2356 individuals, which accounted for 2.9% of the variance in their sample . In fact, by using this SNP-set

score, it was shown that one third of children who harbored ≥50% of the identified risk alleles were nearly twice as

likely to be in the lowest-performing 15% of the mathematical ability distribution . This score was later correlated

with certain environmental factors, demonstrating likely gene × environment interactions .

Subsequently, in a sample of almost 700 dyslexic cases and more than 1400 controls, available GWAS data were

reanalyzed to associate genetic variation specifically with dyscalculia. The authors found rs133885 in MYO18B to

be strongly correlated with mathematical abilities in the dyslexia sample and, to a lesser extent, the general

population. A significantly lower depth of the right intraparietal sulcus, an anatomical brain region involved in

numerical processing in humans, was associated with rs133885 . However, this association was not supported

in the subsequent analysis of a much larger collection of 5144 individuals from four cohorts of European ancestry,

329 of which were diagnosed with dyslexia . A third GWAS aiming to explore the genetic contributions to

mathematical ability was conducted in a general population sample of 602 adolescents/young adults with excellent

verbal ability but either high or low mathematical ability. The marker with the largest effect size was rs789859,

located in the promoter of FAM43A and in high linkage disequilibrium with two SNPs in the adjacent LSG1 gene

(3q29), a region previously linked to learning difficulties and autism . Although the encoded protein’s function

remains obscure, FAM43A was found expressed in the brain, cerebellum and spinal cord .

One GWAS was conducted exclusively on the purpose to assess mathematical ability in the general population of

Chinese elementary school students in 2017. Two discovery and one replication groups were used, totaling almost

1600 individuals. Sample meta-analysis revealed four linked SNPs in SPOCK1 associated on a genome-wide

significance level with a decrease in math scores on two examination periods . Interestingly, mutations in

SPOCK1, which encodes for the extracellular proteoglycan testican-1, have been associated with ID and

microcephaly in humans, whereas Spock1 mouse models have demonstrated strong gene expression in the brain

as well as its role in neurogenesis .

By now, it has become clear that because GWAS are designed to target common variants, often in non-coding,

regulatory or even intergenic regions, they do not necessarily directly reveal the true effect of likely pathogenic

variants, as it would be expected in the case of rare coding variants. On the other hand, initial genome-wide

genotyping platforms were designed based on Caucasian genome frequencies and most of what we currently

know about reading and mathematical abilities and disabilities originates from studies of individuals of Caucasian

ancestry, despite the fact that SLD affects populations globally and irrespective of language. Thus, we are largely

unaware of the genetic architecture of SLD across populations and ethnic ancestries. GWAS, despite setting the

grounds for unbiased genome-wide interrogations, most often than not, have returned results that could be hardly

replicated. This has been attributed either to small effect sizes of common variants, especially for quantitative traits

such as reading-associated traits, small sample sizes to reveal statistically powerful associations or even to lack of

consensus in SLD diagnosis. Hence, alternative yet complementary methods, as those described in the next
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paragraphs, have significantly contributed in the delineation of the genetic architecture of SLD during the last

years.

3.2. Copy-Number Variants (CNVs)

Part of the missing heritability of SLD may be also caused by structural variants. CNVs have been extensively

explored in other neurodevelopmental disorders, such as ASD, ID , Tourette Syndrome , and SLI

; results for SLD have been inconclusive. On one hand, recent analyses of dyslexia cohorts indicate that rare,

large CNVs may not confer a significant burden . On the other hand, rare de novo or inherited deletions or

duplications, such as the Xq21.3 region bearing PCDH11X , 17q21.31 harboring NSF , and 15q11.2(BP1-

BP2) harboring four highly conserved genes (Table 3) , have been reported in cases with SLD. Earlier, a

father and his three affected sons were found to carry a submicroscopic deletion (at least ~176 kb) on 21q22.3,

encompassing the 3′ region of PCNT, genes DIP2A and S100B and the 5′ upstream sequence of PRMT2. The

deletion perfectly segregated with dyslexia and standard scores for phonological decoding and single-word reading

of below −1.5 to −2 standard deviations . As described later (Section 3.3), a non-coding variant in S100B was

also associated with spelling performance in a German family set .

Different loci have been found to harbor deletions and duplications in patients with various clinical presentations

and comorbid math comprehension difficulties. Children with the 22q11.2 deletion syndrome show considerable

difficulties in procedural calculation and word problem solving due to difficulties in understanding and representing

numerical quantities, despite relatively normal reading performance . A 22q11.2 deletion spanning LCR22-4 to

LCR22-5 interval was found in an 11-year-old girl with normal intelligence, number sense deficit, normal results in

spelling and reading tests and social contact difficulties . A severely affected girl with X-linked myotubular

myopathy and math difficulties was found to carry an inherited 661kb Xq28 microduplication with a skewed X

chromosome inactivation pattern . If we exclude syndromic cases, reports on individuals presenting exclusively

with mathematical impairments who bear rare or novel de novo or inherited CNVs are truly scarce. An increase of

CNVs of the Olduvai protein domain on 1q21 (NBPF15), previously known as DUF1220, appear to be involved in

human brain size and evolution and may determine the mathematical aptitude ability of both sexes . This

genetic locus is highly expressed in brain regions with high cognitive function , but it has not been studied in the

context of mathematical disabilities.

Last but not least, a recent study from the Icelandic population investigated the effect of 15q11.2(BP1-BP2)

deletion in cognitive, structural and functional correlations of dyslexia and mathematical disabilities. This CNV was

previously associated with cognition deficits in non-neuropsychiatric cases with a history of SLD . Later,

Ulfarsson et al. showed that the deletion conferred high risk in either dyslexia or dyscalculia, but the risk was even

higher in the combined dyslexia plus dyscalculia phenotype; all deletion carriers performed worse on a battery of

tests assessing reading and mathematical abilities. In the same sample, structural magnetic resonance imaging

(sMRI) and functional MRI (fMRI) were performed, demonstrating that smaller left fusiform gyrus and altered

activation in the left fusiform and left angular gyrus also associated with the 15q11.2 deletion . These brain

areas are involved in the retrieval of mathematical facts, the usage of learned facts and the performance of
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arithmetic operations . This anatomical and functional brain differentiation could be one cause of the

greater risk observed for the combined phenotype in deletion carriers.

Either de novo or transmitted, these structural variations may produce a yet unknown spectrum of disturbances on

genomic, transcriptomic and proteomic level, for instance haploinsufficiency in the case of deletion or

overexpression in the case of duplication , consequently also affecting subsequent protein-protein

interactions; these are hypotheses that warrant further investigation. Interestingly, the 15q11.2(BP1-BP2)

duplication carriers do not show significant cognitive impairments, compared to 15q11.2(BP1-BP2) deletion

carriers, and are comparable to no-CNV controls . This fact supports the role of haploinsufficiency for the genes

mapped on this region, particularly CYFIP1, which was shown to be involved in neuronal development .

3.3. Next-Generation Sequencing

It is unclear how much of the missing heritability of SLD could be attributed to rare or de novo variants of moderate

or high effect, even though this issue has been extensively studied with respect to ID, ASD and developmental

delay . With the emergence of NGS technology, the identification of rare variants could help fill in some

of the missing pieces of the puzzle. Sequencing data have only recently begun to emerge for SLD, supporting the

influence of certain genomic regions on reading performance and related disabilities. As expected, the first efforts

concentrated and sources were allocated on the validation of previously established or suspected dyslexia genes

in various populations.

Originally mapped through a submicroscopic deletion on 21q22.3 in a dyslexia family , S100B was one of 11

genes to be scrutinized for rare variants using targeted NGS in more than 900 dyslexia cases from Finland and

Germany; a 3′ UTR variant (rs9722), located on or adjacent to in silico predicted miRNA target sites, was

associated with spelling performance in the German family set. Moreover, a nonsynonymous variant in DCDC2

(rs2274305) was associated with severe spelling deficiency in the same sample set . A similar approach was

applied to a subsequent next-generation targeted sequencing effort by Adams et al., who selected dyslexia-

associated candidate genes to be screened in 96 affected, unrelated subjects of European ancestry from the

Colorado Learning Disability Research Center (CLDRC). These cases were selected based on a CLDRC-derived

discriminant score indicating impairment in reading ability . The authors searched for rare, likely disrupting,

variants and calculated a statistically significant increase in the frequency of observed mutations in dyslexia cases

—compared to data from 1000 Genomes Project—in two loci: 7q32.1 harboring the adjacent genes CCDC136 and

FLNC (19 missense variants) and 6p22 harboring DCDC2 and KIAA0319 (74 missense variants). The data indicate

that these regions must have an influence on reading performance, even though not all of the above-mentioned

genes show detectable expression in the brain (Figure 1) .

The first whole-exome sequencing (WES) study was published in 2015 by Einarsdottir et al. in an effort to identify

the genetic basis of a familial form of dyslexia with likely complete penetrance in an extended three-generation

pedigree with 12 confirmed dyslexic and four uncertain cases. Through several filtering steps on WES data, a small

heterozygous in/del variant was identified in CEP63, namely c.686–687delGCinsTT; its transmission was

compatible with autosomal dominant inheritance. This rare variant codes for a non-synonymous change in a highly
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evolutionarily conserved amino acid (p.R229L), which was in silico predicted to alter the protein’s tertiary structure

. As discussed later (Section 6), CEP63 is a centrosomal protein involved in microtubule organization and, even

though it is ubiquitously expressed (Figure 1), brain-specific isoforms may be affected by such rare variants. It still

remains to be seen whether CEP63 variants are linked to dyslexia in additional cases.

Several other reports have also demonstrated that dyslexia-associated genes encode proteins with structural and

functional roles in cilia . Recently, rare variants were identified in two genes related to

motile cilia structure and function, namely dynein axonemal heavy chain 5 (DNAH5) and dynein axonemal heavy

chain 11 (DNAH11). This represents the first whole-genome sequencing (WGS) analysis in literature of two

unrelated dyslexia cases, with situs inversus and ADHD symptomatology . Even though direct links between

visceral and functional brain asymmetry are lacking, visceral asymmetry (e.g., situs inversus) is comorbid, at least

in some cases, with psychiatric and neurodevelopmental disorders . Although it could not be proven

unequivocally that the identified variants in DNAH5 and DNAH11 cause susceptibility to dyslexia, these two genes

represent good candidates for further studies.

Overall, the most recent studies that have used state-of-the-art methodology to look for either likely pathogenic

CNVs or rare variants in isolated families have provided clues for the implication of novel genes. Family-based

studies continue to be a powerful method to unravel the genetic basis of dyslexia . However, variations in

reported loci do not explain, so far, but a small percentage of the genetic component of SLD. Consequently, much

of the heritability of learning-related disorders remains unaccounted for. Perhaps the answer is not “hiding”

exclusively in single, rare variants that remain yet to be identified, but also in gene × gene and higher-order

chromatin interactions or epigenetic regulatory mechanisms and ways that the environment can determine the

(epi)genome . It is of note that epigenome-wide association studies have not been reported yet.
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