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Evolving Networks are networks that change as a function of time. They are a natural extension of network science since

almost all real world networks evolve over time, either by adding or removing nodes or links over time. Often all of these

processes occur simultaneously, such as in social networks where people make and lose friends over time, thereby

creating and destroying edges, and some people become part of new social networks or leave their networks, changing

the nodes in the network. Evolving network concepts build on established network theory and are now being introduced

into studying networks in many diverse fields.
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1. Network Theory Background

The study of networks traces its foundations to the development of graph theory, which was first analyzed by Leonhard

Euler in 1736 when he wrote the famous Seven Bridges of Königsberg paper. Probabilistic network theory then developed

with the help of eight famous papers studying random graphs written by Paul Erdős and Alfréd Rényi. The Erdős-Rényi

model (ER) supposes that a graph is composed of N labeled nodes where each pair of nodes is connected by a preset

probability p.

 

Watts-Strogatz graph. https://handwiki.org/wiki/index.php?curid=2084503

While the ER model's simplicity has helped it find many applications, it does not accurately describe many real world

networks. The ER model fails to generate local clustering and triadic closures as often as they are found in real world

networks. Therefore, the Watts and Strogatz model was proposed, whereby a network is constructed as a regular ring

lattice, and then nodes are rewired according to some probability β.  This produces a locally clustered network and

dramatically reduces the average path length, creating networks which represent the small world phenomenon observed

in many real world networks.

Despite this achievement, both the ER and the Watts and Storgatz models fail to account for the formulation of hubs as

observed in many real world networks. The degree distribution in the ER model follows a Poisson distribution, while the

Watts and Strogatz model produces graphs that are homogeneous in degree. Many networks are instead scale free,

meaning that their degree distribution follows a power law of the form:

[1]

[2]



This exponent turns out to be approximately 3 for many real world networks, however, it is not a universal constant and

depends continuously on the network's parameters 

2. First Evolving Network Model - Scale Free Networks

The Barabási–Albert (BA) model was the first widely accepted model to produce scale-free networks. This was

accomplished by incorporating preferential attachment and growth, where nodes are added to the network over time and

are more likely to link to other nodes with high degree distributions. The BA model was first applied to degree distributions

on the web, where both of these effects can be clearly seen. New web pages are added over time, and each new page is

more likely to link to highly visible hubs like Google which have high degree distributions than to nodes with only a few

links. Formally this preferential attachment is:

3. Additions to BA Model

The BA model was the first model to derive the network topology from the way the network was constructed with nodes

and links being added over time. However, the model makes only the simplest assumptions necessary for a scale-free

network to emerge, namely that there is linear growth and linear preferential attachment. This minimal model does not

capture variations in the shape of the degree distribution, variations in the degree exponent, or the size independent

clustering coefficient. Therefore, the original model has since been modified to more fully capture the properties of

evolving networks by introducing a few new properties.

3.1. Fitness

One concern with the BA model is that the degree distributions of each nodes experience strong positive feedback

whereby the earliest nodes with high degree distributions continue to dominate the network indefinitely. However, this can

be alleviated by introducing a fitness for each node, which modifies the probability of new links being created with that

node or even of links to that node being removed.

In order to preserve the preferential attachment from the BA model, this fitness is then multiplied by the preferential

attachment based on degree distribution to give the true probability that a link is created which connects to node i.

Where  is the fitness, which may also depend on time. A decay of fitness with respect to time may occur and can be

formalized by:

Where  increases with 

3.2. Removing Nodes and Rewiring Links

Further complications arise because nodes may be removed from the network with some probability. Additionally, existing

links may be destroyed and new links between existing nodes may be created. The probability of these actions occurring

may depend on time and may also be related to the node's fitness. Probabilities can be assigned to these events by

studying the characteristics of the network in question in order to grow a model network with identical properties. This

growth would take place with one of the following actions occurring at each time step:

Prob p: add an internal link.

Prob q: delete a link.

Prob r: delete a node.

Prob 1-p-q-r: add a node.

4. Other Ways of Characterizing Evolving Networks

In addition to growing network models as described above, there may be times when other methods are more useful or

convenient for characterizing certain properties of evolving networks.
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4.1. Convergence towards Equilibria

In networked systems where competitive decision making takes place, game theory is often used to model system

dynamics, and convergence towards equilibria can be considered as a driver of topological evolution. For example,

Kasthurirathna and Piraveenan  have shown that when individuals in a system display varying levels of rationality,

improving the overall system rationality might be an evolutionary reason for the emergence of scale-free networks. They

demonstrated this by applying evolutionary pressure on an initially random network which simulates a range of classic

games, so that the network converges towards Nash equilibria while being allowed to re-wire. The networks become

increasingly scale-free during this process.

4.2. Treat Evolving Networks as Successive Snapshots of a Static Network

The most common way to view evolving networks is by considering them as successive static networks. This could be

conceptualized as the individual still images which compose a motion picture. Many simple parameters exist to describe a

static network (number of nodes, edges, path length, connected components), or to describe specific nodes in the graph

such as the number of links or the clustering coefficient. These properties can then individually be studied as a time series

using signal processing notions. Other similar properties can be defined and then it is possible to instead track these

properties through the evolution of a network and visualize them directly.

Another issue with using successive snapshots is that only slight changes in network topology can have large effects on

the outcome of algorithms designed to find communities. Therefore, it is necessary to use a non classical definition of

communities which permits following the evolution of the community through a set of rules such as birth, death, merge,

split, growth, and contraction.

5. Applications

 

Route map of the world's scheduled commercial airline traffic, 2009. This network evolves continuously as new routes are

scheduled or cancelled. https://handwiki.org/wiki/index.php?curid=1179563

Almost all real world networks are evolving networks since they are constructed over time. By varying the respective

probabilities described above, it is possible to use the expanded BA model to construct a network with nearly identical

properties as many observed networks.  Moreover, the concept of scale free networks shows us that time evolution is a

necessary part of understanding the network's properties, and that it is difficult to model an existing network as having

been created instantaneously. Real evolving networks which are currently being studied include social networks,

communications networks, the internet, the movie actor network, the world wide web, and transportation networks.
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