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Glaucoma, the second leading cause of blindness worldwide, is an incurable neurodegenerative disorder due to the

dysfunction of retinal ganglion cells (RGCs). RGCs function as the only output neurons conveying the detected light

information from the retina to the brain, which is a bottleneck of vision formation. RGCs in mammals cannot regenerate if

injured, and RGC subtypes differ dramatically in their ability to survive and regenerate after injury. Recently, novel RGC

subtypes and markers have been uncovered in succession. Meanwhile, apart from great advances in RGC axon

regeneration, some degree of experimental RGC regeneration has been achieved by the in vitro differentiation of

embryonic stem cells and induced pluripotent stem cells or in vivo somatic cell reprogramming, which provides insights

into the future therapy of myriad neurodegenerative disorders. Further approaches to the combination of different factors

will be necessary to develop efficacious future therapeutic strategies to promote ultimate axon and RGC regeneration and

functional vision recovery following injury.
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1. Generation of RGCs from Stem Cells

1.1. ESCs

Mammals, unlike teleost fish, cannot regenerate the retina after various types of injury. Consequently, numerous in vitro

protocols of RGC differentiation from pluripotent stem cells were created . Although the supposedly mammalian adult

retinal stem cells were found in the pigmented ciliary margin , there is no irrefutable evidence that they are able to

regenerate RGCs damaged by injury or disease, which is in contrast to the situation in zebrafish and amphibians. In the

chicken, Fischer and colleagues found that RGCs could be induced from retinal margin cells of post-hatch chicken by the

co-injection of insulin and FGF2 into the vitreous chamber .

bFGF-induced ESCs were able to generate RGC-like cells upon differentiation, which were capable of integrating into the

host retina . In addition, hESCs can be directed to retinal progenitors by a combination of Noggin, Dkk1, and IGF1,

which subsequently differentiated primarily into ganglion and amacrine cells . Another protocol adapted from previous

work  extended the culture duration of the embryoid body and used 10% knockout serum replacement, resulting in an

enriched population of functional RGCs from hESCs . Sluch et al. described a protocol that led to the differentiation of

hESCs to RGCs and their subsequent isolation , benefiting from a modified photoreceptor differentiation protocol .

Together with a novel Brn3b-tdTomato-Thy1.2 reporter line, they designed an original protocol called DIDNF+D

(Dorsomorphin + IDE2 + Nicotinamide + Forskolin + DAPT) that can improve the efficiency of the differentiation and

purification of stem cell-derived RGCs .

1.2. iPSCs

The establishment and development of iPSCs  and organoid culture systems , which mimic

organogenesis in vitro, hold a great promise for a range of biological and biomedical applications, especially for

regenerative medicine, by removing the limitation of replacement therapies and by enabling the development of in vitro

disease models for drug screening. As an excellent cell resource, patient-derived iPSCs allow the regeneration of different

and sufficient quantities of autologous cell types almost without the risk of immune rejection and iPSCs have already been

generated from patients with multifarious diseases . In addition, the procedure to generate urine-derived iPSCs with

high reprogramming efficiency has been established , which provides a promising noninvasive source of stem cells and

can subsequently differentiate into desired cell types.

By mimicking RGC genesis, Deng et al. performed a stepwise and efficient differentiation of human Tenon’s capsule

fibroblasts-derived iPSCs toward RGC-like cells by combining DLN (Dkk1 + Lefty A + Noggin) treatment and Atoh7

overexpression sequentially . iPSCs can differentiate into RGCs in neural induction and retinal differentiation culture

medium . The overexpression of a single gene can achieve the same effect. Mouse ESCs or iPSCs were able to be
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induced into RGCs by Pax6 overexpression and subsequent limiting-dilution culture . In addition, retrovirus-

mediated Neurod1 overexpression in iPSCs together with retinoic acid and taurine treatment increased the expression of

RGC markers . Similar to this, a single chemical, DAPT, can induce Pax6/Rx-positive stem cells to undergo

differentiation into functional RGCs .

However, the potential risks of iPSCs such as genomic instability and immunogenicity differences  cannot be

ignored. Whilst this might seem to be a truism, it is nevertheless a crucial problem to address.

1.3. Organoids

Since 3D retinal organoids were successfully established from mouse  and human ESCs , a number of adapted

protocols were established for specific research purposes, such as generating retinal organoids from iPSCs , the

formation of specific structures , or the formation of cell-specific features . This suggests a possibility to

restore vision via the transplantation of RGCs gained from retinal organoids because the efficient derivation of sufficient

numbers of functional and integration-competent cells might partly remove a key limitation for regenerative medicine.

Indeed, cells from ESC-derived eye-like structures were integrated into the RGC layer and differentiated into neurons

when transplanted into adult eyes . Moreover, Tanaka et al. efficiently generated self-induced RGCs with functional

axons from mouse and human iPSCs by combining the cultivation of 3D floating aggregates with a subsequent 2D

adhesion culture .

2. Generation of RGCs by Reprogramming

Nowadays, more and more groups aim at directly reprogramming fibroblasts, MG, or other somatic cells into retinal

neurons in vivo, and some progress has been made. Mammalian MG cannot be maintained in dishes for a prolonged

period, but they can be considered as the endogenous stem cell-like cells, which can be reprogrammed into bipolar,

amacrine, and ganglion cells under certain conditions . For example, combining repressing Notch

signaling with activating TNFα signaling can stimulate MG proliferation to generate neuronal progenitor cells that

subsequently differentiate into retinal neurons .

There is no doubt that TFs have played an essential role in the field of cell reprogramming and this will continue. Klf4,

which can promote ESC self-renewal , is well known as one of the four famous Yamanaka factors . Although Klf4

functions as a transcriptional repressor for axon growth of RGCs and other CNS neurons, it is also a potential candidate

factor for reprogramming to replenish RGCs. Rocha-Martins et al. demonstrated that Klf4 was sufficient to change the

potency of lineage-restricted retinal progenitor cells to generate RGCs in vivo .

Another attractive TF, Ascl1, displays a magic ability in cellular reprogramming in the retina. It is capable of

reprogramming mouse MG into bipolar and amacrine cells in vitro . The forced expression of this neurogenic TF in MG

gave rise to amacrine, bipolar, and photoreceptor cells in young mice after NMDA treatment . In addition, the same

group found that MG-specific overexpression of Ascl1, together with NMDA and trichostatin-A, enabled mice to regenerate

functional retinal interneurons . Judging from previous data, single Ascl1 is not sufficient to convert MG into RGCs

either in vitro or vivo . Meanwhile, Meng et al. found that adenovirus-mediated transduction of Ascl1,

Brn3b(Pou4f2), and Ngn2 can directly convert mouse fibroblasts to RGC-like cells . Recently, Xiao et al. reported that a

combination of triple TFs Ascl1, Brn3b/3a, and Isl1 not only reprogrammed fibroblasts into self-organized and networked

sensory ganglion organoids but also induced RGCs . Subsequently, Wang et al. confirmed that this cocktail treatment

worked well in inducing RGC-like cells . It should be emphasized that strictly speaking, the RGC-like cell is a more

proper term for RGCs induced in vitro, because previous studies have shown that it is difficult to distinguish RGCs from

peripheral sensory ganglion neurons, since both of them share many common molecular hallmarks. This may no longer

be an issue, as our group has recently found that a combination of Pax6 with Brn3a or Brn3b can serve as a unique

identifier for RGCs .

Apart from Klf4 and Ascl1, Atoh7, an essential basic-helix-loop-helix TF for establishing RGC fate, plays a vital role in

RGC regeneration. The forced expression of Atoh7 promotes the differentiation of MG-derived retinal stem cells into

RGCs . In addition, Dkk1 + Noggin + DAPT and the overexpression of Atoh7 together could convert fibroblasts into

RGCs . Furthermore, Neurod1-expressing amacrine and photoreceptor progenitors can be reprogrammed into RGCs

when Atoh7 is inserted into the Neurod1  locus . Xiao et al. showed that combining Atho7 with Brn3b was able to

reprogram mature mouse MG into RGCs efficiently and the MG-derived RGCs were functional, made appropriate central

projections, and improved visual responses . Ngn2 alone is also sufficient to lineage, reprogramming postnatal mouse

MG into RGC-like neurons in vitro and inducing the generation of this neuronal type from late retinal progenitors in vivo

.
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Researchers’ ambitions are unbounded. Numerous modified methods were created to achieve the goal of mature somatic

cell-to-neuron conversion. iPSCs were generated from fibroblasts via mRNA reprogramming and subsequently

differentiated into a retinal fate by modifying a previously established protocol in a directed, stepwise manner . Most

recently, Lu et al. have shown that the ectopic expression of Oct4, Sox2, and Klf4 in RGCs can restore youthful DNA

methylation patterns and transcriptomes, promote axon regeneration after injury, and reverse vision loss in models of

glaucoma and aged mice . Perhaps, other TFs and epigenetic modifications may also be involved in this process or

RGC regeneration. Aside from TF overexpression, knockdown of the RNA-binding protein Ptbp1 by the CRISPR-CasRx

system also converted MG into RGCs in mature murine retinas, which alleviates the symptoms associated with RGC loss

. Moreover, this approach can also make glia-to-neuron conversion in the brain .
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