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Specifically, transformer and ResBlock components are embedded in Paralleled-Residual Multi-Head Self-Attention

(PMSA) to facilitate fine feature extraction guided by the excellent priors of local and non-local information from

CNNs and transformers. Furthermore, the Spectral–Spatial Aggregation Module (S2AM) combines the advantages

of geometric invariance and global receptive fields to enhance the reconstruction performance.
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1. Introduction

Hyperspectral image (HSI) refers to a three-dimensional data cube generated through the collection and assembly

of numerous contiguous electromagnetic spectrums, which are acquired via airborne or spaceborne hyperspectral

sensors. Unlike regular RGB or grayscale images, HSI provides more information in the band dimension, which

allows subsequent tasks to distinguish materials and molecular components that are difficult to distinguish from

normal RGB through their stored explicit or implicit distinctions. As a result, HSI has distinct advantages in a variety

of tasks, including object detection , water quality monitoring , intelligent agriculture , geological

prospecting , etc.

However, hyperspectral imaging often requires long exposure times and various costs, making it unaffordable to

collect sufficient data using sensors for many tasks with restricted budgets. Instead, acquiring a series of RGB or

multispectral images is often a fast and cost-effective alternative. Therefore, using SR methods to inexpensively

reconstruct the corresponding HSI from RGB or multispectral images (MSI) is a valuable solution. Currently, there

are two main reconstruction approaches: the first involves fusing paired low-resolution hyperspectral (lrHS) and

high-resolution multispectral (hrMS) images to produce a high-resolution hyperspectral (HrHs) image  with

both high spatial and spectral resolutions, and the second approach generates the corresponding HSI by learning

the inverse mapping from a single RGB image . Commonly, image fusion-based methods 

 require paired images of the same scene, which can still be overly restrictive. Although reconstruction only from

RGB images  is an ill-posed task due to the assumptions of inverse mapping, theoretical evidence

demonstrates that feasible solutions exist under low-dimensional manifolds , and it provides sufficient cost-

effectiveness.

Utilizing deep learning to model the inverse mapping in single-image reconstruction problems has been widely

studied. Initially, numerous methods leveraged the excellent geometric feature extraction capabilities of CNNs 
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 to achieve success in SR tasks. However, with the outstanding performance of transformers in various

computer vision tasks, many transformer-based approaches  have recently emerged. These approaches

take advantage of the transformer’s global receptive field and sophisticated feature parsing abilities to achieve

more refined HSI reconstruction. Nonetheless, current methods are predominantly limited to single-mechanism-

driven frameworks, which often implies that the transformer architecture sacrifices the exceptional geometric

invariance prior offered by CNNs. In fact, to ingeniously combine the advantages of both, numerous computer

vision tasks have attempted to employ convolutional transformers to enhance the capability of feature extraction in

their models, yielding highly impressive results . Hence, employing a convolutional transformer to

integrate the outstanding characteristics of both approaches is a clearly beneficial solution in SR.

Additionally, to achieve a higher signal-to-noise ratio in hyperspectral imaging, a trade-off between spectral

resolution and spatial resolution is inevitable . Most airborne hyperspectral sensors typically have a spatial

resolution lower than 1 m/pixel , while satellite-based sensors, such as the Hyperion dataset of Ahmedabad,

only have a 30 m/pixel resolution . This significantly limits the effectiveness of HSI in capturing geographic

spatial features. As a result, numerous approaches concentrate on employing mature CNNs or advanced

transformer architectures to enhance feature extraction capabilities while overlooking the interpretability of the

modeling itself and the pixel-mixing issues that arise during the imaging process.

2. Spectral Reconstruction (SR) with Deep Learning

Deep learning technology in SR task encompasses two distinct aspects. The first involves a fusion method based

on paired images, while the second entails a direct reconstruction approach that leverages a single image such as

those from CASSI or RGB systems. In the first category, a simultaneous capture of lrHS and hrMs images is

employed, both possessing the same spectral and spatial resolution as HSIs separately. For example, Yao et al.

 views hrMS as a degenerate representation of HSI in the spectral dimension and lrHS as a degenerate

representation of HSI in the spatial dimension. It is suggested to use cross-attention in coupled unmixing nets

based on the complementarities of the two features. Hu et al. , on the other hand, employed the Fusformer to

obtain the implicit connection between global features and to solve the local neighborhood issue of the finite

receptive field of the convolution kernel in the fusion problem using the transformer mechanism. The training

process’s data load is decreased by learning the spectral and spatial properties, respectively. However, the

majority of the models’ prior knowledge was created manually, which frequently results in a performance decrease

when the domain is changed. Using the HSI denoising iterative spectral reconstruction approach based on deep

learning, the MoG-DCN described by Dong et al.  has produced outstanding results in numerous datasets.

For the second category, where only single images are input, the model will learn the inverse function of the

camera response function of a sensor using a single RGB image as an example. It will separate the RGB image’s

hidden hyperspectral feature data from it and then combine it with the intact spatial data to reconstruct a fine HSI.

Shi et al. , for instance, replaced leftover blocks with dense blocks to significantly deepen the network structure

and achieved exceptional results in NTIRE 2018 . The pixel-shuffling layer was employed by Zhao et al.  to

achieve inter-layer interaction, and the self-attention mechanism was used to widen the perceptual field. Cai et al.
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 presented a cascade-based visual transformer model, MST++, to address the numerous issues with

convolution networks in SR challenges. Its designed S-MSA and other modules further improved the ability of

model to extract spatial and spectral features and achieved outstanding results in a large number of experiments.

The aforementioned analysis reveals that most previous models predominantly focused on enhancing feature

extraction capabilities while neglecting the interpretability of physical modeling. This oversight often resulted in

diminished performance in practical applications. In response, an SR model with robust interpretability was

developed, capitalizing on the autoencoder’s prowess in feature extraction and the simplicity of LMM. By

harnessing the ability of LMM to extract sub-pixel-level features, ample spatial information is concurrently gathered

from RGB images. Subsequently, high-quality HSIs are restored during the reconstruction process.

3. Deep Learning-Based Hyperspectral Unmixing

Several deep learning models based on mathematical or physical modeling have been suggested recently and

used in real-world tests with positive outcomes due to the growing demand for the interpretability of deep learning

models. Among these, HU has made significant progress in tasks such as change detection (CD), SR, and other

HSI processing tasks. Guo et al.  utilized HU to extract sub-pixel-level characteristics from HSIs to integrate the

HU framework into a conventional CD task. In order to obtain the reconstructed HSI, Zou et al.  used the

designed constraints and numerous residual blocks to obtain the endmember matrix and abundance matrix,

respectively. Su et al.  used the paired lrHs and hrMs to learn the abundance matrix and endmember from the

planned autoencoder network and then rearranged them into HSI using the fundamental LMM presumptions.

Moreover, deep learning-based techniques are frequently used to directly extract the abundance matrix or end

endmembers from the HU mechanism. According to Hong et al. , EGU-Net can extract a pure-pixel directed

abundance matrix extraction model and estimate the abundance of synchronous hyperspectral pictures by using

the parameter-sharing mechanism and the two-stream autocoder framework. By utilizing the asymmetric

autoencoder network and LSTM to capture spectral information, Zhao et al.  were able to address the issue of

inadequate spectral and spatial information in the mixed model.

Based on the aforementioned research, utilizing the HU mechanism to drive the SR task evidently improves

interpretability. In light of this, the method introduces a parallel feature fusion module that combines the rich

geometric invariance present in the residual blocks with the global receptive field of the transformer. This approach

ensures the generation of well-defined features and aligns the channel-wise information with the endmembers of

the spectral library.

3. Convolutional Transformer Module

The transformer-based approach has achieved great success in the field of computer vision, but using it

exclusively will frequently negate the benefits of the original CNN structure and add a significant amount of

computing burden. Due to this, numerous studies have started fusing the two. Among these, Wu et al.  inserted
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CNN into the conventional vision transformer block, replacing linear projection and other components, and

improved the accuracy of various computer vision tasks. Guo et al.  linked the two in succession, created the

CMT model with both benefits, and created the lightweight visual model. He et al.  created the parallel CNN and

transformer feature fusion through the developed RAM module and the dual-stream feature extraction component.

The integration of CNN and transformer is inevitable because they are the two most important technologies in the

field of image processing. Many performance comparisons between the two have produced their own upsides and

downsides . Important information will inevitably be lost when using a single module alone. It is crucial to

understand how to incorporate the elements that can be derived from both. In order to perform feature fusion for

the parallel structure of PMSA, the channel size of the CNN that lacks modeling  can be well constrained

utilizing the channel information in the transformer.
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