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Unmanned aerial vehicles (UAVs) are adaptable and rapid mobile boards that can be applied to several purposes,

especially in smart cities. These involve traffic observation, environmental monitoring, and public safety. The need to

realize effective drone forensic processes has mainly been reinforced by drone-based evidence. Drone-based evidence

collection and preservation entails accumulating and collecting digital evidence from the drone of the victim for

subsequent analysis and presentation.
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1. Introduction

Unmanned aerial vehicles (UAVs) are flexible and rapid mobile boards applicable to different purposes, especially in smart

cities, including traffic observation, environmental monitoring, and public safety, as shown in  Figure 1. UAVs have

received tremendous attention since these vehicles can be controlled and monitored without pilots, based on pre-

programming flight paths. In the start, this technology was adopted for military purposes, but it has been recently used

even to facilitate common people’s lives.

Figure 1. Using UAVs for various purposes in the smart environment .

This technology is most commonly used in area monitoring, inspection, surveillance, and cargo purposes . It improves

life quality, especially by monitoring special public events and using shared space . It is observed that the airspace is

loaded with a great deal of traffic, and collision accident reports are increasing day by day . Due to UAVs’ traffic patterns

and technology, tackling the congestion and any incident is more challenging compared to traditional networks . The

increasing trend of congestion leads to high interference, data dropping, overhead, and other abnormalities in the control

system. Various types of UAVs are currently available, including small drones, aircraft, or weapon-enabled drones ;

small drones fly like small insects; they can fly around an area of interest to monitor vital signs and inform the base station

for further decision-making. However, the nature of data is scattered in these networks where different types of devices

are involved, including routers, switches, sensor nodes, and SD cards . The data are located in different places,

and there is a need for proper investigation and planning to extract the forensic features.

The drone functionalities involve several items such as the ground-station controller, onboard power management system

(PMS), onboard flight control board (FCB), (multi)rotor system, electronic speed controller (ESC), and transceiver control

unit (TCU) . Regarding the potential digital forensic items, the ground-station controller, ESC, FCB, TCU, and PMS

offer potentially reliable sources of evidence . The information of log and memory could be taken out of the ground-

station controller unit. It can be a software platform or a customized base-station design, which can interact with FCB. As

drones are unmanned, TCU plays a crucial role by providing a medium for communication and control between the base

station and FCB as well as a medium of communication for different sensors installed on the drone. FCB acts as the

drone brain  by integrating and coordinating the information received from the functional drone units (including the
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mounted sensors), the inertial measurement and controls, and the flight trajectory and navigation control, and also by the

management of power and being in communication with the station on the ground. Additionally, ESC is the core

functionality in a drone: an electronic circuit house responsible for managing the speed and overall efficiency of a drone’s

movement .

Thus, drone forensic items of drone devices could be observed in the form of data stored in the memory (practical use of

memory forensics), electromagnetic (EM) wave data, and contents of different log files. ESC and FCB are the potential

sources of memory items, which could be directly taken out of the components of ESC and FCB, respectively. The

components include flight control data, flight record data, information from the drone’s internal monitoring unit, and data

from the mounted transceivers and sensors. Generally, the signal processing methodologies complement the process of

forensically identifying and extracting the data. Nevertheless, the digital items, which appear in the form of EM signals

from the respective transceivers and mounted sensors, can make further corroborative information available to the

investigation process. In this sense, TCU could be leveraged to extract primary EM signals, which could be processed

further to extract the secondary corroborative digital items.  Figure 2  illustrates a UAV’s architecture and the protocols

supporting its communications, which may help investigators use it during the investigation of drone crimes.

Figure 2. A UAV architecture composition.

2. Drone Forensic Models and Frameworks

The literature on drone forensics has been loaded with different models and frameworks proposed by various scholars.

They consider four perspectives in common: forensic analysis, non-forensic analysis, forensic framework, and application

in the forensic analysis . For instance, in , the researchers focused on the ways to improve the evidence needed in

cases where a drone is examined under digital forensics conditions. They concentrated upon the wireless forensics

aspects. On the other hand, in , the authors discussed all components of a drone. They all emphasized the use of the

Linux operating system and its potential to gather evidence on the Linux file system. Note that to work properly, drones

need to use an OS. The researchers in  attempted to build a tool using Java-FX to visualize the real-time flight control.

Their designed tool is not directly applicable to the DF field; however, it can create efficient connections between a drone

and its controller to transfer data. In addition, this tool can display sensor parameters, including GPS, IMU, and altitude for

pilots, providing a great level of flight safety . In the same way, the researchers in  forensically examined the DJI

Phantom 2 Vision Plus to find out whether the flight path of a UAV can be reconstructed using positional data collected

from the UAV. They also carried out a brief examination of counter-forensic methods to discover whether the record of a

flight path can be detected. In , the authors conducted a preliminary forensic analysis on the Parrot Bebop, known as

the only UAV similar to the Parrot AR Drone 2.0. In , the most important challenges in UAV forensic analyses were

addressed; then, two separate parts, i.e., UAV and flight controller, were investigated. In that study, the author retrieved

the flight-related data from the device in the form of “.pud” files and then created a novel “.pud” file at each session
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between the UAV and the controller. In the case of each “.pud” file, at the opening point of the file, a set of metadata was

found, comprising the UAV’s serial number, the date and time of the flight, the flight controller model, and the flight

controlling application. After that, the author attempted to determine the images and videos recorded by the UAV’s

onboard camera. In the images, there were the EXIF data showing information about the latitude and longitude

coordinates of the sites from which the images had been taken. However, the owner of the device could be identified only

if the UAV and controller are seized by determining the serial number of the device.

In , a general review was performed on drone forensics using the DJI Phantom 2. The breakdown analyses of the

drone’s software and hardware components were conducted; then, the way the components could be used when

implementing drone forensics was examined. The results obtained in that study established a belief in the persistence and

scope of drone forensics. In addition, the study findings could facilitate having deeper insight into this concept and

enhance its quality. Furthermore, in , working on the Parrot AR Drone 2.0, the authors attempted to integrate the

visualizing data recovered from drones with a non-forensic approach. They designed an application to visualize the log

parameters from flight data. However, only a small number of drones were evaluated in their study. The researchers in 

analyzed the drones’ vulnerabilities and applications and their relationships with issues that generally arise in the

cybersecurity domain. They asserted that if a drone is hacked and abused by opponents, serious risks or consequences

may arise. That study primarily focused on identifying the benefits of using drones in numerous conditions, from

employing these devices as children’s toys to using them as mass destruction weapons.

The authors in  proposed a 12-phase forensic framework to offer an innovative approach to the systematic investigation

of UAVs. Wide-ranging tests were carried out on five commercial UAVs, for instance, the Parrot AR Drone 2.0, to identify

the relationships amongst various components. They also executed an experiment to validate their developed framework.

All the UAVs tested in the study were modified by adding and removing some parts. These modifications were done to

check whether the framework involved all of the various elements in any basic commercial UAV and to examine whether it

could be applied to a comprehensive UAV analysis. They found out that an important issue that does not allow for

mitigating the attacks effectively is the deficiency of law enforcement training processes in UAVs. None of the UAVs were

exposed to forensic analyses; however, an effective framework was finally constructed, which applied to the examination

and analysis of the stages involved.

The authors in  were the first researchers that comprehensively analyzed the DJI Phantom 3 Standard. The examined

UAV was flown towards two different sites. Then, the collected data were separated into three parts: controller, drone, and

phone/tablet. Eventually, they explored two types of files of interest: the “.dat” files produced by the UAV and the “.txt” files

produced by the DJI GO application. The files were first subjected to the decryption and decodification processes; after

that, the information about the GPS locations, flight status, Wi-Fi connections, remote control, motors, etc., was extracted.

When the obtained data were analyzed, and the proprietary file structures were well-understood, the researchers

developed the DROP tool for the analysis of the evidentiary files. They also developed a forensically-sound open-source

drone parser (DROP) tool.

In , the researchers comprehensively discussed how the GPS coordinates could be used as location evidence while

examining the crimes committed with the help of a drone. They attempted not only to extract the system logs but also to

visualize GPS coordinates on maps, where the web-based third-party platforms were used to plot the flight paths.

In , the authors explored the flight data correlation among drones, SD cards, and mobile phones. Finding a connection

between a drone and a suspect significantly facilitates criminal inspections. The application of specific software to private

UAV devices could provide many digital items such as GPS timestamps and waypoints, several connected satellites,

barometer, pitch, roll, battery status, azimuth, distance, photos, and videos.

In , the essential major log parameters of the autonomous drone were analyzed, and it was suggested to employ

comprehensive software architecture related to drone forensics with preliminary results. The researchers expected that

their developed software could provide a user-friendly graphical user interface (GUI) based on which the users could

extract and investigate the onboard flight information. In addition, they claimed their findings would contribute to the body

of the drone forensics field by designing a new tool that greatly helps run investigations effectively on criminal deeds

executed with the help of drones.

As reported in , open-source tools, e.g., ExifTool and CsvView, have been used in different studies to extract items from

mobile applications of drones using mobile forensic techniques. The researchers in that paper used Windows and Kali (a

Linux distribution) as forensic workstations to conduct the needed analyses on A.R Drone and DJI Phantom 3. Different

open-source tools such as Geo-Player have been used primarily to visualize the data related to the flight path. Due to the
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absence of a proper built environment, including a package manager, configuration tools, and a compiler within the UAV

system, this option entails making a serious change to the data existing in the UAV. Therefore, it was terminated in favor

of the logical level acquisition. This was carried out by mounting a forensic mass storage device onto a UAV; the existing

files were copied entirely from the mounted “/ data” partition using the “cp” command.

Ref.  discussed the challenges that might arise during a UAV/drone forensic analysis. For this purpose, the currently

employed forensic guidelines were evaluated for their efficiency when used in the DRF domain. After that, the authors

offered their own set of guidelines in this regard. To end with, they explained how their procedures could be effectively

implemented when analyzing a drone forensically. They employed DJI Phantom 3 drone as their case study. A key

limitation in UAV forensics is that there is not any confirmed forensically useful tool (this indeed recommends a direction

for future research). For example, the subsequent logical step is the creation of different parsing tools that can analyze

original data and make available readable and reliable information. In addition, UAVs are expected to attain the capacity

needed for being properly integrated with radio communication services in the future.

In , a novel architecture was introduced using the ID-based Signcryption to guarantee the authentication process and

privacy preservation. In the initial step, the authors defined the key elements that the architecture relies on. After that, they

investigated the interactions between these elements to explore how the process goes on. Next, they elaborated on their

proposed authentication scheme. Thus, the RFID tags were applied to tracking the drones and the temporary identity to

preserve privacy. In addition, they simulated the calculation of the average renewal of temporary identity by testing the

drones’ different times and speeds.

The researchers in  made a forensic analysis of a captured UAV. Security forces may capture suspected UAVs using

different techniques or tools such as a shotgun; these devices may break into private properties. It is necessary to

determine what software/hardware modules are used to examine a UAV. After that, the investigator needs to perform

three activities: gathering accessible evidence, providing the chain of custody, and analyzing the media/artifact loaded on

the UAV. The increasing incidence of unlawful utilization of UAVs reflects legal ambiguity and uncertainty in the existing

aviation regulations. This problem has resulted in a shortage of evidence and fundamental standards.

In , the authors attempted to identify the potential cyber-physical security threats and address the current challenges

attributed to UAV security before a time in the future when UAVs are the predominant vehicles used by ordinary people.

Furthermore, in that study, there is a suggestion about using a certain method that can be applied effectively to examining

large-scale cyber-security attack vectors of such systems concerning four classes of systems, which are highly important

to UAV operations. Furthermore, the authors elaborated on the contributions of their findings and suggested the

appropriate ways to defend against such attacks. The researchers in  designed arbitrary software and then applied it to

a locked target to gain access to the device’s interior sensors and logs with the help of neutralization and hardening

strategies to predict the effectiveness. The researchers in  designed an innovative scheme called distributed, agent-

based secure mechanism for IoD and smart grid sensors monitoring (DASMIS). They aimed to test a hybrid of peer-to-

peer (P2P) and client-server (C/S) network architecture with reduced protocol overheads for immediate and bandwidth-

efficient communication. Each node within this system is assigned with an initial status and provided with a python-based

agent that can scan and detect in read-only node IDs, node MAC address, system calls made, node IP address, all

running system programs and applications, installed applications, and modifications. The agent securely authenticates the

nodes, puts communications in a coded form, and approves inter-node access. This can prevent and detect different

attacks, e.g., modification, masquerading, and DoS attacks. In addition, it can execute data encryption and hashing and

report the changes to other peer nodes and the server located at the C&C center. In , the researchers attempted to

facilitate the processes such as generating, analyzing, validating, and optimizing data to trace evidence recovery. To do

this, they introduced and explained the approach adopted for solving this problem considering the target fiber retrieval

context using self-adhesive tapes.

In , the authors attempted to adapt digital forensic processes to enhance drone incident response plans by

implementing the drone forensic analysis process. The authors in that study provided more detailed information about the

developed Drone Forensics and Incident Response Plan. They concluded that the Federal Aviation Administration (FAA)

could update what unmanned aerial systems (UAS) require based on two classifications of UAS. In addition, they

performed an inclusive review of the existing literature. They found that it lacks research concentrating on incident

responses and forensic analysis frameworks designed specifically for remotely piloted aerial systems. Then, they

attempted to bridge this gap. The researchers in  introduced the concept of “electromagnetic watermarking” as a

technique exploiting the IEMI impacts to embed a watermark into civilian UAVs so that forensic tracking could be done

well. In , many aircraft accident investigators and drone forensics investigators were surveyed to find out how they

employ forensic models to carry out forensic analyses on drones. The authors analyzed the data using the chi-square test
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of independence; it revealed no significant connection between the drone investigations of the groups of respondents and

the techniques they use to perform UAS forensics.  introduced a new method to accurately and quickly determine

whether a drone is lying on the ground or in the sky. These results are attained just by eavesdropping on the radio traffic

and processing it using standard machine learning techniques (instead of using any active approach). The authors in that

study asserted that if the network traffic is classified properly, the exact status of a drone could be accurately determined

using the overall operating system of ArduCopter (for instance, several DJI and Hobbyking vehicles). Furthermore, a lower

bound was created on the detection delay when using the aforementioned method. It was confirmed that their proposed

solution could discriminate against a drone’s state (moving or steady) with approximately 0.93 SR in 3.71 s. The

researchers in  assessed and discussed the security vulnerabilities of Parrot Mambo FPV and Eachine E010 drones.

They then suggested proper countermeasures to enhance their resilience against possible attacks. The findings showed

that Parrot Mambo FPV was vulnerable to de-authentication and FTP service attacks, while Eachine E010 was

susceptible to radio frequency (RF) replay and custom-made controller attacks.

The authors in  discussed the overall legal processes that need to be taken into action to collect drones from the crime

scene and investigate them in the laboratory. In addition, in , a model was introduced for collecting and documenting

digital data from the flight items and the related mobile devices to aid investigators in forensically examining two common

drone systems, i.e., the Mavic Air and DJI Spark. Recently, several studies have been conducted in the drone forensics

domain. For example, in , a novel drone forensic readiness framework was proposed; however, it lacked a real

implementation. Moreover, the authors addressed several issues and challenges in the drone forensics domain in 

.

The variety of drone infrastructures makes drone forensics a diverse, complex, and unclear domain. Researchers and

developers typically deal with the drone forensics domain from three perspectives: drone infrastructures perspective and

technical perspective as well as drone incident perspective. However, they vary in covering the perspectives. For

example, some models covered all three drone forensics perspectives, whereas others covered two, and others covered

only one.

The comprehensive review of all drone forensic models reveals that the drone forensics domain lacks a unified

model/framework for data collection and analysis. There is a lack of a post-investigation stage that can facilitate

evaluating the investigation stage and overcoming previous mistakes. 

3. Machine Learning Techniques Used in the Drone Forensics Field

Machine learning (ML) is an artificial intelligence (AI) area that deals with developing mathematical predictive models.

These models are created in a way to analyze large volumes of data and uncover repeated patterns by using the

underlying correlations among the various components of the data. This aids in the decision-making process without

human interference. Such techniques also attempt to increase the forecast accuracy by learning from “experience” (also

known as historical data). A training phase and a testing phase are both included in machine learning algorithms. The

process of enhancing prediction performance is closely based on the process of training the model, when these models

are given a large amount of historical data to produce mathematical values, simulating an artificially trained brain.

Systems security , natural language processing , robotic vehicles , fraud detection , text and handwriting

classification , object categorization , digital forensics , and speech recognition  are some of the areas of ML.

ML models may also be applied to the discovery and detection of hidden patterns in the data being analyzed as well as

the classification of the data. This is where the process is tested. Each of these algorithms follows a different approach to

data analysis. Random forest, naïve Bayes, KNN, linear regression, artificial neural network (ANN), SVM, and decision

tree are examples of such techniques. ML has been applied to studying a variety of issues linked to UAV. The authors in

 presented a comprehensive study of machine learning algorithms for UAV-based communications. The study

discussed how machine learning has been used to improve numerous phases of UAV-based communication, including

channel modelling, resource management, positioning, and security. The paper divided the ML applications into four

categories: (1) security (public safety, network jamming, and eavesdropping), (2) positioning (placement, detection, and

mobility), (3) resource management (network planning, power management, routing, and data caching), and (4) physical

layer (channel modelling, interference management, and spectrum allocation). The article then summarized the relevant

work in each of these domains. An aggressive attempt to inject noise into a communication channel to disrupt ordinary

communication exchange is known as a jamming attack. A two-classifier-based technique for identifying jamming attacks

on a cloud radio access network (C-RAN) network was proposed in . The multilayer perceptron (MLP) was the first

classifier, and the Kernlab support vector machine (KSVM) was the second. In a low-dimensional space, jamming attacks

were found to be non-linearly separable. As a result, for certain jamming attack vectors that bypass the MLP classifier, the

differentiation between two classes of radio signal data can be achieved by the use of a KSVM machine learning solution.
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Their results were promising; they assisted to demonstrate the importance of using machine learning to classify data in

order to refer to a jamming or eavesdropping attempt.

The authors in  proposed an anomaly detection model to reduce several attack vectors’ consequences. Their ML-

based anomaly detector can detect five attack types: constant position deviation (message modification), random position

deviation (message modification), velocity drift attack (message modification), DOS attack (message deletion) with

constructive and destructive interference, and flight replacement attack (message injection). The automatic dependent

surveillance-broadcast (ADS-B) air traffic surveillance system was the case study in their research (automatic dependent

surveillance-broadcast). Preliminary ADS-B data reconstruction, combined presentation of the reconstructed and actual

values to the SVDD (support vector data description) for training, and the definition and implementation of a hypersphere

classifier for anomaly detection are parts of the two-step anomaly detection scheme. Reinforced learning-based power

provisioning techniques are used to protect UAV transmissions from attacks such as eavesdropping and jamming . ML

can be used to detect an eavesdropper by building a classifier based on the received signals connected to eavesdropping

attacks and non-attacks . They developed the ML classifier by feeding it with data that showed a radio signal jamming

attack.

Deep-learning algorithms proposed for feature extraction, planning, and situational awareness in UAV-related domains

were the subject of another review article . In , first, the researchers noted that drones frequently fly higher than

typical ground user equipment. Flight altitude and line of sight propagation in open space both have an impact on radio

signal transmission. They suggested a technique for locating rogue drones that could be found in a mobile network.

Ground-based technology can be used to register drones that are lawful. On the other side, unregistered rogue drones

that enter restricted airspace could be a security risk. The authors created virtual drone deployment scenarios for urban

settings that included outside drones and ground-based equipment. The simulation scenario took into account the quantity

of flying sites and sectors, inter-site distance, antennas for a base station (height and power), and carrier frequencies.

Data obtained from the simulation were gathered and split into two categories: training and testing. The logistic regression

(LR) and decision trees (DTs) were employed as two ML techniques. Other user equipments and drones were chosen as

the two categories (variables) for LR. DT is a supervised learning model that learns by accessing feature-value tuples

from a dataset. In this instance, the following items were noted: the serving cell data, the received signal strength indicator

(RSSI), the standard deviation of the eight strongest reference signals, and the difference between the top two reference

signals for strength. The classification results demonstrated a 100% accuracy in detecting rogue drones at heights more

than 60 m and a 5% detection rate for lower altitudes. This had to deal with radio frequency interference, a more common

phenomenon at lower altitudes.

Ref.  proposed a deep-learning-based method for detecting and identifying drones. Particular attention was paid to the

identification and detection of drone acoustic fingerprints. Drones were used to create 1300 audio samples for the drone

noise data standards. Additionally, to assure the accuracy of detections, the datasets included a combination of drone

audio recordings recorded in an interior environment employing drone propeller sounds, stillness, and pure drone noise.

To equalize audio clips, time gaps between captures were also utilized. Processing was done based on the file type, data

sampling rate, and channel bitrate of each audio file. The deep-learning classifier became more successful by segmenting

audio samples into more manageable portions (which were then experimented to determine the most accurate segment

size). In a three-class classification experiment, the three selected classifiers—recurrent neural networks (RNN),

convolutional neural networks (CNN), and convolutional recurrent neural networks (CRNN)—reported the classification of

the processed drone data (drone type one, drone type two, and other noise). The CNN method was proven to produce

better results than the other two.

A full drone identification approach based on ML was presented by Lee et al. in . Using a CNN-based cascade

classification method, the authors could classify picture data (data produced by drones with cameras) for their study. A

total of 2206 drone pictures had their tags manually added. In total, 1777 were utilized for training, and the remaining 429

were used for testing. The system was able to determine the location of a drone on a camera-captured image and the

vendor model of a drone based on machine classification, with stated accuracy rates of more than 90%. In , using the

Haar feature processing method, the authors were able to extract drone sub-images with the help of the pictures

collected.

The researchers in  offered a way to spot anomalies in a swarming flight with numerous flying drones, where the

adversary might purposefully influence some drones to sabotage. Flight data from several streams were examined in

order to discover these irregularities. The authors produced 16 samples per time stamp when sampling the drone data,

which was made up of time-series sensory data. Prelabeled data were gathered from both normal and unusual drones.

Three types of anomalies were identified: noise produced by sensor-induced signal interruptions in flight, anomalous
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signals generated in flight but recoverable in flight, and signal faults that force an aircraft to land as a result of a

malfunction. A generative model-based 1D signal unsupervised CNN classifier was chosen for the studies.

In , based on the classification of drone data using ML, a drone position prediction method was defined. A naïve Bayes

classifier may predict a drone’s power usage and current location using drone data gathered at the ground controller,

which may allow later plans to continue or cease flying. Drone altitude, the four transmitter coils’ switching status, and the

measured power transfer efficiency are among the data fields used for classification. To confirm the correctness of the

classification, the resulting drone position was contrasted with the actual drone position. To create a naïve Bayes model,

the classifier was trained utilizing the prior observations of the drone flight trajectory, path, and position as input. The

accuracy error rates ranged from 0.09 to 45%, which were shown to be dependent on feature parameters such as

transmitter coil-switching values. Based simply on the communication between the drone and the remote controller, the

authors in  developed a methodology to detect the presence of a remotely operated drone, its current condition, and its

movement. As a classifier, they used the random forest technique. It also assesses the methodology’s efficacy in the face

of high packet loss and evasion attempts. The methodology was created and tested exclusively for RPAS (remotely

piloted aircraft systems) drones. They showed a detection accuracy of 99.9% within 30 m without packet loss and

detection accuracy of >97% within 200 m with up to 74.8% packet loss.

The authors of  suggested a hierarchical ensemble learning technique for radio frequency (RF) data-based UAV

detection and identification. UAVs are initially detected, then their types and modes of operation are identified by the

second and third classifiers. Each classifier used ensemble learning based on the KNN and XGBoost algorithms. The

proposed method attained a classification accuracy of 99% with ten categories. There are three different types of UAVs,

and each class indicates its nature and manner of operation (ON mode, hovering mode, flying mode, or recording mode).

Additionally, in , the current machine-learning-based methods were examined to find a way to identify UAVs from

diverse data sources.

In , a method was described for identifying the drone pilots via radio control signals broadcast to a UAV using a

standard transmitter. Twenty trained pilots who flew the UAV on three different routes were contacted to collect the data

required. There were nine characteristics in the dataset, including thrust, pitch, roll, and yaw at the time (t) and their

derivatives at the time (t) (D). Additionally, a control simultaneity variable at a time (t) was provided, describing the control

signals available at the time (t). The proposed system was shown to have an accuracy rate of 90% and used the random

forest algorithm. The suggested method can be applied to forensic analysis in the event of a suspected drone hijacking to

locate the UAV’s pilot and raise the alarm.

In , the authors proposed using only the encrypted communication traffic between the drone and the remote controller

to determine the drone’s status (flying or at rest). A drone equipped with ArduCopter firmware was used to collect the data.

Six features were produced without using the contents of the encrypted packet (inter-arrival time, packet size, mean and

standard deviation computed over a certain number of samples of inter-arrival time and packet size). Three different

classifiers, i.e., decision tree, random forest, and neural networks, were used to classify data. The random forest classifier

yielded superior results for drone detection.

The authors of  recognized inter-drone communication reliability as a concern, where transmitted packets may not

arrive at their intended locations. To effectively predict the transmission patterns, the authors employed ML. Utilizing a

Monte Carlo simulation setup that incorporates transmission channel modeling, the success/failure probability was

determined. The ML method for linear regression was combined with a comparative analysis using support vector

machines (SVMs) with a quadratic kernel. The first property identified was the negative link between inter-drone distance

and the likelihood of a successful packet transfer. A total of 20 drones were simulated to encourage measurement data

collection. In packet transmission, the chance of communication channel success was set to 0.05. Transmission

probability inside a channel, node locations, and time were all recognized as specific features for linear regression

training. Quantization factor values, transmission probabilities, timings, and network node locations were among the

features used by the SVM-QK classifier. The average prediction rates yielded an extremely low error rate of 0.00597.

The literature showed that digital forensics for drones utilizing ML algorithms had received less attention. Very little

research focuses on employing ML techniques for forensic analysis of drone data. The authors of  surveyed existing

drone forensics (DRF) studies. They discussed the difficulties and possibilities in drone forensics. They also developed an

approach to investigating drone-related events.

On the other hand, several models and frameworks have been proposed in the literature for drone and digital forensics to

solve the challenges and issues of drone forensics .
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