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Land use land cover (LULC) modeling is considered as the best tool to comprehend and unravel the dynamics of future

urban expansion.
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1. LULC Modeling

With the advancement in data acquisition techniques (e.g., satellite imagery, citizen science-based approaches, and big-

data platforms) and computational power, land use land cover (LULC) modeling practices have made substantial

progress. Like other modeling techniques, the major phases associated with LULC modeling are calibration, simulation,

validation, and prediction . The data collection is the crucial pre-modeling step. Data can be obtained from satellite

imagery, land surveys, and different online portals (e.g., census). The collected data are further used to develop the LULC

maps using image classification techniques. Moreover, the data are also required for different explanatory variables

responsible for the LULC changes. The explanatory variables are the drivers of LULC change ranging from bio-physical,

proximity, demographic, socio-economic, economic, and institutional factors. The prominence of explanatory variables

varies from region to region; however, the demographic factors (e.g., population growth) are the prominent factors in

LULC changes .

The first stage of LULC models (i.e., model calibration) utilize the historical LULC information at different time intervals

(say t  and t ) and explanatory variables to estimate the amount of change to parameterize the model . The simulation

phase generates transition probability maps (TPMs) based on the potential explanatory variables . TPMs, also called

suitability or propensity maps, determine the potential location subject to LULC changes in the future [t ]. The third phase,

model validation, estimates model accuracy in predicting the LULC changes. For this purpose, LULC prediction was

performed for a time step (say t ) for which the measured LULC information was also available, and the accuracy of the

model was estimated by comparing the predicted LULC with the measured LULC datasets . The last phase of the LULC

modeling predicts the future LULC by utilizing a well-calibrated/validated model. Figure 1 presents the schematic of the

LULC modeling process. A significant limitation associated with the LULC modeling is that these models can accurately

predict the LULC changes for a short time, varying from 2–3 decades. The reason behind this limitation is their

dependency on historical patterns of change to predict the future LULC, which can perform reliable predictions for a short

duration . The following section discusses the details of different LULC models.
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Figure 1. Schematic of the LULC modeling processes.

A wide range of explanatory variables affects the LULC changes including bio-physical, proximity, socioeconomic, and

economic variables. The bio-physical variables include the prevailing environmental conditions for LULC change, with a

number of biotic and abiotic factors (i.e., soil, terrain, climate, lithology, vegetation, and topography) . The proximity

factors are based on the proximity concept, so the areas closer to the prevailing LULC class are more inclined to change

in the other LULC class. The proximity factors include proximity to roads, rivers, cities, reservoirs (or waterbody), rail

networks, and stream networks . The other proximity factor associated with urban planning and management is distance

to the city center, distance to shopping stores, and distance to schools. Socioeconomic factors include demographics,

literacy rate, urbanization, industrialization, and regional gross domestic product (GDP). Demographic factors such as

population growth are the prominent factors in LULC change . Moreover, economic factors encompass a direct impact

on decision-making (e.g., taxes, subsidies, demands, production and transportation costs, trade, capital flows and

investments, technology, and credit access). Among the economic factors, taxes and subsidies are considered the major

driving factor for LULC changes.

Accuracy estimation is a very important step for the validation of LULC models. Furthermore, the use of multiple

performance metrics is recommended to ensure the credibility of the model. The Kappa-matrix is the most commonly

used evaluation measure for LULC prediction, however, several researchers have criticized its use for accuracy

assessment in remote sensing applications . Relative operating characteristics are another important quantitative metric

used to validate a LULC model. Moreover, Gaur et al.  used the chi-square goodness of fit test to evaluate the

performance of the LULC model.

2. Statistical Models

Statistical models predict the LULC changes by establishing a mathematical relationship between the explanatory

variables and LULC patterns . The established relationship is utilized further to generate the TPMs. The popular

statistical models used to estimate the quantity and patterns of LULC changes are regression-based models (e.g., linear

regression and logistic regression, generalized additive models) and stochastic models (e.g., Markov chains). These

models are often combined with other models such as cellular automata or genetic algorithms.

The significant advantage of these models lies in their ease of implementation and generalizability. However, these

models do not perform well in cases where the explicit representation of human-based decision-making is required (e.g.,

farmers’ perception of agricultural intensification). In such cases, process-based models outperform statistical models.

[1][6]

[5]

[5][6]

[7]

[1]

[8]



These models primarily deal with the simulation of the temporal analysis of change and lag behind the spatial analysis of

changes . Table 1 presents the details of the statistical models.

Table 1. Details of the statistical models.

Model Underlying Assumptions Example Software

Statistical Stationarity

Logistic regression

DYNAMICA/LCM
model

Markov Models

Generalized linear modeling

Generalized additive modeling

3. Cellular Automata (CA) Models

CA models utilize certain transition rules, neighborhood effects, and expert knowledge to analyze the spatial dynamics of

change . The spatial discretization units are pixels, cells, and parcels. CA models generate suitability maps instead of

TPMs to estimate the spatial analysis of change . These models simulate the LULC changes based on historical

patterns and allocation based on the suitability of change and neighborhood interaction.

CA models apply both top–down and bottom–up approaches to simulate the LULC changes. Top–down determines the

amount of LULC changes when the observations are available for the entire region of interest; however, the bottom–up

approaches allocate the LULC change at the individual spatial unit. The major advantage of these models is that the

decision-making process can be easily employed. These models can efficiently simulate the spatial analysis of change,

however, lags in the temporal dynamic of change. Table 2 presents the details of the CA models.

Table 2. Details of the cellular automata models.

Model Underlying Assumptions Software

Cellular Models

Extrapolation of historical LULC patterns CLUE-S

Allocation based on land suitability CA

Allocation by consideration of the state of neighborhood pixels SLEUTH

Dynamic CA-based model Environment Explorer

Model that simulates one-way transformation from one LULC class to another GEOMOD

4. Economic Model

Economic models simulate the LULC change as a market process . Two types of economic models (i.e., sector-based

and spatially disaggregated economic models) are widely used and differ by scale . The sector-based models focus on

the economic sector in the structural form to simulate the decisions on a more aggregated scale. Econometric models

consider land as a fixed factor of production and illustrate demand and supply explicitly as contributors to market

equilibria. The spatially disaggregated models simulate the decision at a smaller scale (e.g., field and neighborhood

levels).

These models are advantageous in improving the trustworthiness of the economic processes leading to LULC changes

. However, the models also require assumptions of the market structures, functional forms, and economic processes.

Table 3 presents the details of the economic models.

Table 3. Details of the economic models.
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Model Underlying Assumptions Software

Economic models

Computable general
equilibrium (CGE) FARM; GTAP; EPPA; IMAGE

Partial equilibrium (PE)

ASMGHG;
IMPACT;

GTM; AgLU;
FASOM; GLOBIOM

5. Agent-Based Models (ABMs)

ABMs consist of multi-agent systems and their interactions to simulate the complex LULC change processes . Here,

agents include farmers, laborers, landowners, policymakers, practitioners, professionals, and decision-makers who make

decisions in LULC changes and processes (Figure 2) . ABMs integrate the human decisions on LULC change and

ponder the social interactions, adaptation, and development at multiple levels .

Figure 2. A schematic of agent-based models.

ABMs facilitate the incorporation of expert elicitation and can communicate the model structure and functions to the

stakeholders. However, these models lag in terms of generalization.

ABMs consist of independent decision-making entities (i.e., agents), an environment through which agents interact, and

the rules that define the relationship between agents and their environment. With reference to a LUCC model, an agent

may epitomize a land manager who combines individual knowledge and values, information on different driving factors

(e.g., soil quality, climatic conditions, and topography), and an assessment of the land-management choices of neighbors

(the spatial social environment) to calculate a land-use decision .

6. Hybrid Models

The idea behind the hybrid models is to combine the strength of individual models . As each model has its advantages

and disadvantages, hybrid models were invented to overcome the limitation of each model (e.g., the CA–Markov model is

a hybrid of the CA and Markov models (statistical models)) . CA models deal well with the spatial dynamics of

change; however, it lags in simulating the temporal changes, so their integration with the Markov model could help

overcome this issue.

The advantage of hybrid models is developing new methodologies that better represent reality. However, due to their

complexity, these models are difficult to calibrate/validate.

7. Time Series Modeling for LULC Change

The time series modeling of LULC changes is another technique that is still in the evolution phase with the development of

Earth observations. It utilizes multiple labeled time-series images for training to predict the LULC class labels of unlabeled

time-series remote sensing images . Remote sensing-based LULC monitoring approaches are classified into three
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categories (i.e., post-classification, pre-classification, and hybrid strategies) . The post-classification approach deals

with comparing the classified LULC maps with different time stamps and the overall accuracy determined by the product

of individual map accuracies . The pre-classification method has become feasible as satellite imagery has evolved with

time, and has the potential to avoid the error accumulation issue that occurred in the post-classification method. The pre-

classification method became viable as the satellite imagery archive grew over time , and has the capability to avoid

the error accumulation issue that takes place in the post-classification technique. The LULC changes in the pre-

classification technique are determined through the time-series analysis of vegetation indices. Moreover, the hybrid

techniques utilize a combination of approaches to improve LULC monitoring (e.g., hybrid strategies such as the

continuous change detection and classification algorithm . LULC time-series monitoring has been widely used for the

detection of global forest change .
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