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Immune checkpoint inhibitors (ICIs) have dramatically improved the outcomes of non-small cell lung cancer patients and

have increased the possibility of long-term survival. However, few patients benefit from ICIs, and no predictive biomarkers

other than tumor programmed cell death ligand 1 (PD-L1) expression have been established. Hence, the identification of

biomarkers is an urgent issue.
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1. Introduction

Lung cancer is the most frequent cause of cancer death worldwide. In 2020, 2.21 million new cases (11.4% of all cancer

cases) and 1.80 million deaths (18.0% of all cancer deaths) were reported . The most common histological type is non-

small cell lung cancer (NSCLC), and most patients are diagnosed at an advanced stage . Platinum-based

chemotherapy has historically been the standard treatment for NSCLC, although limited therapeutic effects in patients

with a poor prognosis have been observed. Recently, the advent of immune checkpoint inhibitors (ICIs) such as

nivolumab and pembrolizumab (anti-programmed cell death 1 (PD-1) antibodies), atezolizumab and durvalumab (anti-

programmed cell death ligand 1 (PD-L1) antibodies), and ipilimumab and tremelimumab (anti-cytotoxic T-lymphocyte-

associated antigen 4 (CTLA-4) antibody) has dramatically altered the approach of advanced NSCLC treatment. First-line

ICI therapy has demonstrated more prolonged survival than conventional platinum-based chemotherapy for stage IV

NSCLC. In a phase III trial (KEYNOTE-024), pembrolizumab increased overall survival (OS) to 30 months for NSCLC

patients with a PD-L1 tumor proportion score (TPS) > 50%, thereby demonstrating its superiority to conventional platinum-

based chemotherapy . Furthermore, a phase III trial (KEYNOTE-042) comparing pembrolizumab monotherapy with

platinum-based combination therapy in NSCLC patients with PD-L1 TPS ≥ 1% showed significantly longer OS in the

pembrolizumab group than in the chemotherapy group . Atezolizumab also prolonged OS over platinum-based

chemotherapy (17.5 vs. 15.1 months) in advanced NSCLC with PD-L1 ≥ 1% of tumor cells (TCs) or ≥ 1% of tumor-

infiltrating immune cells (ICs), regardless of histology . In a phase III study (CheckMate 227), nivolumab plus ipilimumab

was associated with better OS than chemotherapy (17.1 vs. 14.9 months) in patients with NSCLC, regardless of PD-L1

expression level . First-line ICIs combined with chemotherapy are among the current standard therapies for advanced

NSCLC, compensating for the disadvantages of early treatment failure with ICI monotherapy. In a phase III trial

(KEYNOTE-189) of patients with advanced NSCLC, the addition of pembrolizumab to platinum-doublet chemotherapy

significantly prolonged PFS and OS (survival rate at 12 months was 69.2% vs. 49.4%) . In addition, this combination

therapy overcame the early failure of ICIs, which had been a problem with single-agent therapy . In a phase III trial

(KEYNOTE-407) evaluating the efficacy of pembrolizumab added to platinum-based combination therapy in patients with

advanced lung squamous cell carcinoma (LUSC), OS was significantly prolonged (17.1 vs. 11.6 months) . A phase III

study (IMpower150) revealed that the addition of atezolizumab to carboplatin/paclitaxel or

carboplatin/paclitaxel/bevacizumab in non-squamous NSCLC patients significantly prolonged OS to 19.2 months .

Furthermore, in another phase III study (IMpower130), atezolizumab added to carboplatin/nab-paclitaxel significantly

prolonged OS to 18.6 months , while in the CheckMate 9LA phase III trial, nivolumab/ipilimumab in combination with

platinum-based therapy significantly prolonged OS to 15.6 months compared with platinum-based therapy in NSCLC

patients . ICIs also raised the possibility that advanced NSCLC patients may have a better chance of long-term

survival. A first-line phase III immunotherapy trial (KEYNOTE-024) with pembrolizumab for NSCLC achieved a 5-year OS

rate of 31.9% . Two phase III trials of nivolumab (CheckMate 017 and CheckMate 057) in patients with previously

treated advanced NSCLC demonstrated 5-year OS rates of 13.4% and 8.0%, respectively .

However, many NSCLC patients do not benefit from ICIs or suffer significant life-threatening immunotoxicity . Immune-

related adverse events (ir-AEs) can affect various organs, and dermatitis, pneumonitis, colitis, and endocrinopathies tend

to be most common. While most cases are mild to moderate in severity, some cases are severe or even fatal, especially

when not promptly recognized and appropriately managed . Although it is essential to administer ICIs to appropriate
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patients, the expression of programmed death-ligand 1 (PD-L1), a widely used biomarker, is not a sufficient predictive

factor. ICIs are effective even in NSCLC patients with low or absent PD-L1 expression and may not be effective in patients

with high PD-L1 expression. Therefore, there is an urgent need to identify new biomarkers to predict the response to ICIs

for selecting the best anti-cancer agents for each patient.

2. Predictive Biomarkers beyond PD-L1 Expression

2.1. Tumor Mutational Burden

Tumor mutational burden (TMB) is defined by the number of mutation calls (somatic single variant (SNV) and

multinucleotide variant (MNV) and small insertions and deletions (indels)) per megabase (Mb) of interrogated coding

sequences. These mutations can be transcribed and translated into neoantigen-containing peptides, processed by the

antigen-processing machinery, and loaded onto major histocompatibility complex (MHC) molecules for presentation on the

cell surface. The immune system recognizes neoantigens as non-self-immunogenic targets, activating and targeting T

cells . Tissue and blood TMB is a potential biomarker of immunotherapy outcomes in multiple tumor types. In

particular, lung cancer is primarily caused by chronic exposure to carcinogens in cigarette smoke, and the efficacy of ICIs

correlates with a molecular signature characteristic of cigarette carcinogen-related mutagenesis, certain DNA repair

mutations, and the burden of neoantigens . An analysis of the CheckMate 568 study of nivolumab plus ipilimumab in

NSCLC reported that ORR increased in patients with a higher tissue tumor mutational burden (tTMB) using the

FoundationOne CDx (F1CDx) assay, plateaued at a threshold of 10 mutations (mut)/Mb (ORR: 4%, 10%, 44%, and 39%

in patients with TMB <5, <10, 10, and ≥15 mut/Mb, respectively), and the enhanced response was independent of PD-L1

expression . The CheckMate 227 study of nivolumab plus ipilimumab in NSCLC also demonstrated longer PFS in

patients with tTMB-high, with at least 10 mut/Mb, irrespective of tumor PD-L1 expression level , while a phase III trial of

durvalumab (MYSTIC) and tremelimumab indicated longer PFS and OS in NSCLC patients with blood TMB (bTMB)-high,

with at least 20 mut/Mb . A retrospective analysis of the POPLAR and OAK studies demonstrated that a positive

correlation of tTMB and bTMB and NSCLC patients with bTMB ≥ 16 mut/Mb led to an increased PFS benefit from

atezolizumab .

Although TMB is optimally calculated by whole-exome sequencing (WES), this approach presents difficulties in terms of

its substantial cost and turnaround time in clinical settings . To address this, targeted sequencing assays enriched with

known cancer-driving gene mutations are used to assess TMB. The F1CDx assay and Memorial Sloan Kettering-

Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) assay are moderately concordant with WES in

TMB analysis , and both assays were recently approved as companion diagnostics by the FDA to assess TMB in

solid tumors. In this approval, tTMB-high was defined as having at least 10 mut/Mb according to the KEYNOTE-158 study

of pembrolizumab for unresectable or metastatic solid tumors . Despite these initial positive findings, the role of TMB as

a biomarker in NSCLC remains unclear. It was reported that tTMB was not predictive of the efficacy of pembrolizumab

alone or in combination with chemotherapy according to retrospective analyses of the KEYNOTE-189 and KEYNOTE-021

studies, respectively .

TMB as a biomarker has other limitations, including a lack of standardization between the testing platforms. Low tumor

purity may lead to inaccurate TMB estimates . Lung cancer specimens often have a low tumor cell content due to

inflammatory cells and stromal components, leading to an underestimation of TMB. Furthermore, although high-TMB is

thought to lead to increased neoantigens, the effect on the tumor immune response may vary depending on whether the

neoantigen is derived from clonal (or homogeneous tumor) or subclonal (or heterogeneous tumor) mutations because the

lower antigen dosage compared with the clonal neoantigen burden reduces the chances of identifying T cells reactive to

subclonal neoantigens. McGranahan et al. demonstrated that sensitivity to ICIs in NSCLC and melanoma patients was

enhanced in tumors enriched for clonal neoantigens, and cytotoxic chemotherapy-induced subclonal neoantigens were

enriched in certain poor responders .

2.2. DNA Mismatch Repair Deficiency and Microsatellite Instability

DNA mismatch repair (MMR) is a highly conserved biological DNA repair pathway in mammalian cells and is crucial for

maintaining genomic stability. MMR deficiency (dMMR) is the initiating event in many cancer types . The deficient DNA

MMR mechanism leads to missed DNA replication errors, resulting in the increased acquisition of mutations, primarily in

the form of microsatellite instability (MSI) or alterations in microsatellites, which increases the burden of neoantigens 

.

A clinical trial of pembrolizumab across dMMR tumors spanning 12 cancer types demonstrated that ORR was 53%, and

complete response (CR) was 21% . This led to pan-cancer approval by the FDA. However, the role of the MMR status
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as a predictive biomarker for immunotherapy in lung cancer remains unknown because it was not included in this study.

The prevalence of MSI-high (MSI-H) status is rare, at 0.53% and 0.60% of lung adenocarcinomas (LUAD) and LUSCs,

respectively .

2.3. CD8  Tumor-Infiltrating Lymphocytes

The adaptive immune system identifies and targets tumor cells. Interestingly, CD8  T cells, CD4  T cells, B cells, dendritic

cells, and effectors of innate immunity, namely macrophages, polymorphonuclear leukocytes, and natural killer cells (NK),

as well as all cell types within the tumor, are classified as tumor-infiltrating lymphocytes (TILs) . Of them all, the

presence of tumor-infiltrating CD8  T cells, which recognize tumor antigens, is a prerequisite for successful ICI treatment

when presented at the tumor cell surface in the context of HLA class I. Several small-sized studies and a meta-analysis

demonstrated that CD8  TILs were significantly associated with better OS, PFS, and ORR in NSCLC patients treated with

ICIs . Shirasawa et al. demonstrated a classification system based on PD-L1 expression and CD8

TIL status that accurately predicts the efficacy of ICIs in NSCLC patients better than tumor PD-L1 expression .

Furthermore, Kumagami et al. showed that the frequency of PD-1 CD8  T cells relative to that of PD-1  regulatory T

(Treg) cells in the tumor microenvironment could predict the efficacy of ICIs more accurately than tumor PD-L1 expression

.

Although TILs have great predictive power, they present some technical problems as biomarkers in clinical practice, and

CD8  TILs within the stroma and invasive margin compartment indicate a better outcome than those in the intratumoral

compartment . However, biopsy samples obtained by CT-guided needle biopsy or bronchoscopy in patients with

advanced NSCLC are often insufficient to evaluate stromal TILs, and a sample may not represent the TME of the entire

primary tumor or metastatic lesions.

2.4. Human Leukocyte Antigen Class I

The human leukocyte antigen (HLA) system encodes cell-surface proteins involved in immune system regulation .

Furthermore, HLA-I presents peptides derived from intracellular proteins on the surface of CD8  T cells, so that cancer

cells are killed .

Several specific HLA-I genotypes are suggested as biomarkers for ICI treatment; Naranbhai et al. reported that HLA-A*03

alleles led to a low ORR and poor PFS and OS in various cancer patients, including NSCLC with ICI treatment, in the

most significant epidemiological analysis of the association between HLA-I and ICI efficacy so far . In melanoma

patients, HLA-B44 supertype and HLA-A02 supertype led to prolonged OS with ICI treatment . Losses in

heterozygosity (LOH) and HLA gene expression have also been reported as candidate biomarkers. Chowell et al.

reported that LOH in cancer reduces OS in NSCLC and melanoma patients with ICI treatment . However, Negrao et

al. reported no significant correlations between HLA-I zygosity and PFS or OS in NSCLC patients with ICI treatment .

Schaafsma et al. analyzed 33 cancer types and reported that tumors with high HLA gene expression tended to have

higher immune cell infiltration, including CD8  T and NK cells, and a more immunologically active TME, thus leading to

increased survival .

2.5. Blood Biomarkers

2.5.1. Peripheral T-Cell Phenotype

Surface and intracellular proteins expressed on T cells are expected to be biomarkers because ICIs target T-cell

regulatory pathways. A prominent surface marker mainly expressed by CD8 effector memory T-cells is PD-1 .

Interestingly, PD-1 on CD8 TILs is used as a marker of tumor-reactive cells . Indeed, peripheral blood PD-1 CD8 T-

cells can also express neo-antigen-recognizing T-cell receptors .

An analysis of 29 NSCLC patients treated with PD-1 inhibitor demonstrated that 70% of patients with disease progression

lacked a PD-1 CD8 T-cell response, whereas 80% of patients with a clinical response showed PD-1 CD8 T-cell

responses within 4 weeks from the induction of treatment Kamphorst et al. .

Furthermore, CX3C chemokine receptor 1 (CX3CR1) is a receptor of the chemokine CX3CL1, which is involved in the

adhesion and migration of leukocytes . Furthermore, CX3CR1 is a marker of T-cell differentiation and is rigidly

expressed on CD8  T cells through irreversible differentiation from CX3CR1 CD8  T cells during the effector phase ,

which theoretically provides an advantage as a biomarker compared with transiently expressed molecules on T cells.

Yamaguchi et al. reported that an increase in the frequency of the CX3CR1  subset in circulating CD8  T cells early after

ICI therapy correlated with response and survival in 36 NSCLC patients .
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The CD62L  T-cell subpopulation in tumor-draining lymph nodes contains antitumor T cells and mediates potent

antitumor activity when intravenously transferred . Kgamu et al. reported that patients who responded to ICIs had a

significantly higher ratio of effector CD62L  CD4  T cells in their peripheral blood before treatment, and that a decreased

CD62L  CD4  T-cell ratio after ICI treatment resulted in resistance, with long-term survivors maintaining a high

proportion of CD62L  CD4  T-cells .

2.5.2. Neutrophil-to-Lymphocyte Ratio

The neutrophil-to-lymphocyte ratio (NLR) is a surrogate marker of general host immune response to various stress stimuli.

The systemic inflammatory response of cancer prompts neutrophil infiltration, resulting in the secretion of interleukin-2 (IL-

2), interleukin-6 (IL-6), interleukin-10 (IL-10), tumor necrosis factor α (TNF-α), and vascular endothelial growth factor

(VEGF) . The activation and intratumoral invasion of lymphocytes are thought to be necessary for the antitumor activity

of ICIs , while TNF-α and IL-10 cause lymphocyte dysfunction and a decrease in lymphocyte numbers .

2.5.3. Interferon-Gamma

Interferon-gamma (IFN-γ) is a cytokine that plays a role in innate and adaptive immunity, and is produced predominantly

by T cells and NK cells for innate immunity but also by CD4  and CD8  T cells for adaptive immunity . In tumors, TILs

are the primary source of IFN-γ . IFN-γ engages JAK/STAT signaling in the tumor cell, which induces MHC class I

expression, accumulates effector cells, and promotes a loss of the suppressive activity of T-regs. Moreover, the deficiency

of INF-γ inhibits effective innate and adaptive antitumor immunity .

Some reports suggested that a high-INF-γ level is related to the efficacy of ICIs. A study of durvalumab for previously

treated NSCLC patients demonstrated that patients with a high pre-treatment IFN-γ signature (high levels of IFN-γ, LAG3,

CXCL9, and PD-L1 mRNA expression) had higher ORR, PFS, and OS . An analysis of 17 NSCLC patients treated with

nivolumab showed a trend of a more prolonged OS in those with high INF-γ expression compared with those with low

INF-γ expression . In the POPLAR study evaluating atezolizumab in NSCLC patients, a high T-effector-IFNγ-associated

gene expression status was correlated with prolonged OS .

2.5.4. Interleukin-8

As is known, interleukin-8 (IL-8) is a member of the CXC chemokine family and was initially identified as a chemotactic

factor for neutrophils . Furthermore, IL-8 is secreted by malignant cells and tumor stroma cells across many different

tumor types . Moreover, IL-8 directly affects endothelial cells, malignant cells, and cancer stem cells, and indirectly

affects attracting and modulating tumor-associated myeloid cells .

Sanmamed et al. reported early increases in serum IL-8 levels as a predictor of poor outcome in small retrospective

cohorts of patients with advanced melanoma or NSCLC who received ICIs . A retrospective analysis demonstrated that

high levels of IL-8 at the initiation of ICIs led to a poorer OS across renal cell carcinoma, melanoma, NSCLC, and

urothelial cancer . However, a poorer OS was also observed for other factors aside from ICI treatment, suggesting that

IL-8 may also be a prognostic marker rather than a predictive biomarker of ICI treatment.

2.5.5. Blood/Tissue Composite Biomarker

Nebet et al. demonstrated that pre-treatment circulating tumor DNA (ctDNA) and peripheral CD8 T cell levels are

independently associated with the durable clinical benefit of ICIs, and developed the DIREct-Pre (durable immunotherapy

response estimation by immune profiling and ctDNA pre-treatment) score system, combining tumor PD-L1 expression with

pre-treatment ctDNA and circulating immune cell profiling . Patients with higher DIREct-Pre scores had significantly

longer PFS with ICIs .
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