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Hyperspectral remote sensing provides image data with very high spectral resolution. This high resolution allows

subtle differences in plant health to be recognized. Such a multidimensional data space, generated by

hyperspectral sensors, has given rise to new approaches and methods for analyzing hyperspectral data.

remote sensing  hyperspectral  plant diseases  early detection  oil palm  citrus

cereals  solanaceae

1. Introduction

The spread of various, including invasive, plant diseases and pests is one of the most important problems in

modern agriculture . Therefore, to solve these relevant problems, the timely monitoring of plant diseases and

pests is necessary. Remote sensing methods hold great promise for solving these problems . Remote sensing

data can identify crop conditions, including diseases, and provide useful information for specific agricultural

management practices .

There are two types of remote sensing technologies: passive (such as optical) and active remote sensing (such as

LiDAR and radar). Passive optical remote sensing is usually divided into two groups based on the spectral

resolution of the sensors used: multispectral and hyperspectral remote sensing . Hyperspectral sensing shows

great potential as a non-invasive and non-destructive tool for monitoring biotic and abiotic plant stress among

passive remote sensing methods, which measure reflected solar radiation . This method collects and stores

information from the spectroscopy of an object in a spectral cube that contains spatial information and hundreds of

contiguous wavelengths in the third dimension. Hyperspectral imaging offers many opportunities for the early

recognition of plant diseases by providing preliminary indicators through subtle changes in spectral reflectance due

to absorption or reflection. Hyperspectral images with hundreds of spectral bands can provide detailed spectral

portraits, hence, they are better able to detect subtle variations in soil, canopies or individual leaves. Thus,

hyperspectral images can be used to solve a wider class of problems for the accurate and timely determination of

the physiological status of agricultural crops. The early identification of disease spread and pest outbreaks may

avoid not only significant crop loss, but also reduce pesticides usage and mitigate their negative impacts on human

health and the environment, thus, improving the existing IPM .

In recent years, a wide range of miniature hyperspectral sensors available for commercial use have been

developed, such as Micro- and Nano-Hyperspec (Headwall Photonics Inc., Boston, MA, USA), HySpex VNIR
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(HySpex, Skedsmo, Skjetten, Norway) and FireflEYE (Cubert GmbH, Ulm, Germany) . These sensors can be

installed on manned or unmanned airborne platforms (for example, airplanes, helicopters, and UAVs) to obtain

hyperspectral imaging and support various monitoring missions .

There are various types of hyperspectral cameras, e.g., push-broom cameras, whisk-broom cameras and snapshot

cameras. The measurement principle of each sensor type depends on its ability to obtain the whole picture

(snapshot) at one time, one line of the picture (push broom) or one point of the picture (whisk broom) .

The general routine of collecting and processing hyperspectral images is presented in Figure 1. The light reflected

from plant leaves is collected by the hyperspectral camera (Figure 1A) . A hyperspectral data cube (Figure 1B)

is obtained from the hyperspectral camera. Then various data normalization (Figure 1C) and feature extraction

(Figure 1D) algorithms are applied to reduce the data’s dimensionality. Finally, different automatization techniques

are used to automate the classification process (Figure 1E).

Figure 1. Hyperspectral data retrieval and processing (remastered from ). (A) Reflected light collection by the

hyperspectral camera, (B) a hyperspectral data cube, (C) data normalization, (D) feature extraction, (E) automation
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of the classification process.

Hyperspectral remote sensing provides image data with very high spectral resolution . This high resolution

allows subtle differences in plant health to be recognized. Such a multidimensional data space, generated by

hyperspectral sensors, has given rise to new approaches and methods for analyzing hyperspectral data .

For a long time, feature extraction methods have been used that reduce the data dimension without loss (or with

minimal loss) of the original information on which the classification of hyperspectral images is based . One of the

most widely used dimensionality reduction techniques in HRS is principal component analysis (PCA). PCA

computes orthogonal projections that maximize data variance and outputs the dataset in a new, uncorrelated

coordinate system. Unfortunately, the informational content of hyperspectral images does not always coincide with

such projections . Thus, other methods are also used for feature extraction. The common methods for extracting

hyperspectral data used in pathological research traditionally include PCA , derivative analysis , wavelet

methods and correlation plots . Alternatively, the hyperspectral image data can be processed at the image level

to extract either spatial representation alone or joint spatial spectral information. If only spatial features are

considered, for example, when studying structural and morphological features, spatial patterns among neighboring

pixels with relation to the current pixel in the hyperspectral image will be extracted. Machine vision techniques,

such as using a two-dimensional CNN, with a p × p chunk of input pixel data have been implemented to

automatically generate high-level spatial structures. Extraction of spatial characteristics, in tandem with spectral

elements, has been shown to significantly improve model performance. . The use of spatial spectral

characteristics can be achieved using two approaches: (i) by separately extracting spatial characteristics using

CNN  and combining data from a spectral extractor using RNN, or LSTM ; and (ii) by using three-

dimensional patterns in hyperspectral data cubes (p × p × b) associated with p × p spatially adjacent pixels and b

spectral bands to take full advantage of important distinctive patterns.

2. Hyperspectral Remote Sensing for Early Plant Disease
Detection

It was believed that, due to the lack of interaction between specialists in engineering and biology, there is a

significant gap in the scientific basis for planning an experiment to use remote sensing data in determining plant

state. Although the above demonstrates the practical possibility of late and early detection of plant diseases using

HRS, it also reveals differences in the technical results (range of important bands) between researchers, which

indicates an insufficient study of the experimental methodology, as can be seen from Table 1, Table 2, Table 3 and

Table 4.

Table 1. Oil palm disease early detection by HRS.
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Publication
Year Culture Treat Equipment Studied

Bands
Important

Bands Study Type Reference Location

2009
oil

palm

basal
stem
rot

APOGEE
spectroradiometer

of unmentioned
model

450–
1100

715, 734,
791

field Malaysia

2009
oil

palm

basal
stem
rot

APOGEE
spectroradiometer

of unmentioned
model

300–
1000

462, 487,
610.5,

738, 749
field Malaysia

2010
oil

palm

basal
stem
rot

PP Systems
Unispec-SC
spectrometer

310–
1130

670–715,
490–520,
730–770,
920–970

field Indonesia

2011
oil

palm

basal
stem
rot

APOGEE
spectroradiometer

of unmentioned
model

350–
1000

495,
495.5,
496,

651.5,
652,

652.5,
653,

653.5,
654,

654.5,
655,

655.5,
656,

656.5,
657,

657.5,
658,

658.5,
659,

659.5,
660,

660.5,
661, 908

field Malaysia

2014
oil

palm

basal
stem
rot

ASD
spectrometer of

unmentioned
model

325–
1040

not
mentioned

field Malaysia

2017 oil
palm

basal
stem
rot

APOGEE
spectroradiometer

of unmentioned
model

325–
1000

495,
495.5,
496,

651.5,
652,

652.5,

field Malaysia
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Table 2. Citrus disease early detection by HRS.

Publication
Year Culture Treat Equipment Studied

Bands
Important

Bands Study Type Reference Location

653,
653.5,
654,

654.5,
655,

655.5,
656,

656.5,
657,

657.5,
658,

658.5,
659,

659.5,
660,

660.5,
661, 908

2017
oil

palm

basal
stem
rot

GER 1500
spectrometer

273–
1100

540–560,
650–780

field Malaysia

2018
oil

palm

basal
stem
rot

Specim
spectrograph of

unmentioned
model

350–
1000

650–750 field Malaysia

2020
oil

palm

basal
stem
rot

Cubert S185
camera

325–
1075

800–950 greenhouse Malaysia

2014
oil

palm
orange
spotting

ASD FieldSpec 4
spectrometer

300–
1050

400–401,
404–405,
455–499,
500–599,
600–699,
700–712

field Malaysia

2019
oil

palm
orange
spotting

ASD HandHeld 2
spectrometer

400–
1050

601–630 field Malaysia

2019
oil

palm
orange
spotting

ASD HandHeld 2
spectrometer

325–
1075

680–780 field Malaysia
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Publication
Year Culture Treat Equipment Studied

Bands
Important

Bands
Study
Type ReferenceLocation

2012 citrus
citrus

greening

Spectra Vista
SVC HR-1024
spectrometer

350–
2500

537, 612, 638,
662, 688, 713,
763, 813, 998,

1066, 1120,
1148, 1296,
1445, 1472,
1546, 1597,
1622, 1746,
1898, 2121,
2172, 2348,
2471, 2493

field USA

2012
citrus

(orange)
citrus

greening

Spectra Vista
SVC HR-1024
spectrometer
& Varian Cary

500 Scan

457–
921

650–850
field
and
lab

USA
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Table 3. Solanaceae disease early detection by HRS.

Publication
Year Culture Treat Equipment Studied

Bands
Important

Bands
Study
Type ReferenceLocation

2012
citrus

(orange)
citrus

greening
Specim Aisa

Eagle camera
457–
921

410–432,
440–509,
634–686,

734–927, 932,
951, 975, 980

field USA

2018 citrus
citrus

greening

Specim
Imspector

V10E
spectrograph

combined with
camera

379–
1023

493, 515, 665,
716, 739

lab China

2019 citrus
citrus

greening

Cubert S185
camera and

ASD
HandHeld 2

spectrometer

400–
1000

544, 718, 753,
760, 764, 930,
938, 943, 951,
969, 985, 998,

999

field China

2020 citrus
citrus

greening

Cubert S185
camera &

ASD
HandHeld 2

spectrometer

450–
950,
325–
1075

468, 504, 512,
516, 528, 536,
632, 680, 688,

852

field China

2020 citrus
citrus

greening

ASD
HandHeld 2

spectrometer

370–
1000

not mentioned field China
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[49]

[50]

[51]

[52]

Publication
Year Culture Treat Equipment Studied

Bands
Important

Bands Study Type Reference Location

2003 tomato
late

blight

Megatech
GER-2600

spectrometer

400–
2500

750–930,
950–
1030,
1040–
1130

field USA

2014 tobacco TSWV

Ocean
Optics

USB2000
spectrometer

450–
850

475.22,
489.37,
524.29,
539.65,
552.82,
667.33,
703.56,
719.31,
724.31,
758.39

greenhouse Bulgaria

2015 tomato

late
blight,
early
blight

Specim
Imspector

V10E
spectrograph

combined
with camera

400–
1000

442, 508,
573, 696,

715
lab China
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Publication
Year Culture Treat Equipment Studied

Bands
Important

Bands Study Type Reference Location

2017 tomato
gray
mold

Specim
Imspector

V10E
spectrograph

combined
with camera

380–
1023

655, 746,
759–761

lab China

2017 tomato
yellow

leaf curl

Specim
Imspector

V10E
spectrograph

combined
with camera

450–
1000

560–575,
712–729,
750–950

lab China

2017 tobacco TMV

Specim
Imspector

V10E
spectrograph

combined
with camera

450–
1000

697.44,
639.04,
938.22,
719.15,
749.90,
874.91,
459.58,
971.78

lab,
greenhouse

China

2018 tomato

late
blight,
target
and

bacterial
spot

Spectra
Vista SVC
HR-1024

spectrometer

350–
2500

445, 450,
690, 707,
750, 800,

1070,
1200

lab USA

2018 tomato TSWV

Specim
Imspector

V10E
spectrograph

combined
with camera

400–
1000

700–1000 lab Israel

2018 potato PVY
ASD

FieldSpec 4
spectrometer

350–
2500

500–900,
720–1300

field USA

2019 tomato
late

blight,
blackleg

StellarNet
Blue Wave

spectrometer

400–
1000

not
mentioned

greenhouse,
field

UK

2019 tobacco TSWV

Surface
optics

SOC710VP
camera

400–
1000

780–1000 lab China
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Table 4. Wheat disease early detection by HRS.

Publication
Year Culture Treat Equipment Studied

Bands
Important

Bands Study Type Reference Location

2019 potato PVY
Specim
FX10

camera

400–
1000

not
mentioned

field
The

Netherlands

2019 potato
early
blight

Specim
Imspector

V10E
spectrograph

combined
with camera

430–
900

550, 680,
720–750

field Belgium

2019 tomato

bacterial
spot,
target
spot

Resonon
Pika L
camera

380–
1020

408–420,
630–650,
730–750

lab and field USA

2019
pepper
early

TSWV

Specim
Imspector

V10E
spectrograph

combined
with a

camera

400–
1000

700–1000 lab Israel

2019 potato
late

blight

Senop Oy
Rikola

camera

500–
900

620, 724,
803

field
The

Netherlands

2020 tomato

yellow
leaf curl,
bacterial

spot

Resonon
Pika L
camera

380–
1020

550–850 lab and field USA

2020
tomato
early

ToCV
PP Systems
Unispec-SC
spectrometer

310–
1100

402.2,
405.5,
412.2,
415.6,
425.7,
429.0,
449.2,
556.4,
559.7,
563.0,
566.4,
676.4,
679.7,
722.9,
726.3,
862.1

lab Greece
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Publication
Year Culture Treat Equipment Studied

Bands
Important

Bands Study Type Reference Location

2020 potato
late

blight

ASD
FieldSpec 4

spectrometer

400–
900

439–481,
554–559,
654–671,
702–709

lab Canada

2020 potato
late

blight

ASD
FieldSpec 4

spectrometer

660–
780

668, 705,
717, 740

lab Canada

2020
potato
early

late
blight,
early
blight

Spectra
Vista SVC
HR-1024

spectrometer

350–
2500

700, 857,
970, 990,

1100,
1241,
1380,
1890,
2300

lab USA

[71]

[72]

[73][74]

Publication
Year Culture Treat Equipment Studied

Bands
Important

Bands Study Type Reference Location

2000 wheat fusarium

Specim
Imspector V9
spectrometer

combined
with camera

425–
860

not
mentioned

lab USA

2011 wheat fusarium

Specim
Imspector

V10E
spectrograph

combined
with camera

400–
1000

500–533,
560–675,
682–733

lab and
field

Germany

2015 wheat fusarium

Headwall
Photonics
Hyperspec

Model 1003B-
10151

spectrometer
combined

with a camera

520–
1785

1411 lab Brazil

2018 wheat fusarium

Specim
Imspector
V10E and
ImSpector

N25E
spectrographs

400–
1000,
1000–
2500

430–525,
560–710,

1115–
2500

greenhouse Germany

2018 wheat
fusarium,

yellow
rust

Gilden
Photonics
camera

400–
1000

650–700 lab, field UK

2019 wheat fusarium
ASD

FieldSpec Pro
spectrometer

350–
2500

471, 696,
841, 963,

1069,
2272

field China

2019 wheat fusarium
Surface optics

SOC710VP
camera

400–
1000

447, 539,
668, 673

field China

2020 wheat fusarium
Surface optics

SOC710VP
camera

400–
1000

560, 565,
570, 661,
663, 678

field China

2020 wheat fusarium
ASD

FieldSpec Pro
spectrometer

350–
2500

350–400,
500–600,
720–1000

field China
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As a result of hyperspectral remote sensing, for each pixel of a scene, a random vector was got, which can be

considered the result of a random experiment. The outcome of a random experiment can be favorable or

unfavorable, which is associated with the detection or non-detection of a disease in the space reflected by a

particular pixel. Accordingly, these vectors can be processed by methods developed in the theory of probability and

in mathematical statistics, which make it possible to effectively determine the characteristics of a random

experiment. In this case, the tasks of data normalization and the allocation of those frequency bands (important

bands) that make the greatest contribution to the outcomes of experiments (favorable or unfavorable) and,

accordingly, are the most informative for identifying diseases, can be solved. The selection of important bands is a

critical step in the detection of plant diseases using HRS. As a rule, data normalization is carried out first to get rid

of noise. Then, various algorithms are applied to identify important bands, such as Savitzky–Golay filtering 

; the Mann–Whitney U test ; coefficient of variation ; PCA ;

SPA ; GA and BRT ; SAM .

The listed algorithms make it possible to achieve the determination of important bands. Various methods of

machine learning allow achieving a fairly high accuracy in identifying diseases (between 60 and 95% accuracy)

based on those data. However, from Table 1, Table 2, Table 3 and Table 4, it can be concluded that even under

very similar experimental conditions—For example when studying oil palms—Different sets of important bands are

obtained at the output, often with a spread of more than 100 nm . Xie et al., in , used

five different algorithms to select important bands, taken from five different studies: t-test , Kullback–Leibler

divergence , Chernoff bound , receiver operating characteristics  and the Wilcoxon test . It is

noteworthy that, in 4 tests out of 5, only 1 frequency out of 15 matched closely. In this case, the scatter of the

ranges of all initially selected important bands was in the range from 400 to 850 nm, (400, 402, 403, 411, 413, 418,

Publication
Year Culture Treat Equipment Studied

Bands
Important

Bands Study Type Reference Location

2007 wheat
yellow

rust

ASD
FieldSpec Pro
spectrometer

350–
2500

not
mentioned

field China

2012 wheat
yellow

rust

ASD
FieldSpec Pro
spectrometer

350–
2500

not
mentioned

field China

2014 wheat
yellow

rust

ASD
FieldSpec Pro
spectrometer

350–
2500

428, 672,
1399

field India

2019 wheat
yellow

rust

ASD
FieldSpec Pro
spectrometer

350–
1000

460–720,
568–709,
725–1000

field China

2019 wheat
yellow

rust

Specim
ImSpector
PFD V10E

camera,
Senop Oy

Rikola
camera

400–
1000,
500–
900

594, 601,
706, 780,
797, 874,

881

field Germany

2019 wheat
yellow

rust
Cubert S185

camera
450–
950

not
mentioned

field China

2019 wheat
yellow

rust

Headwall
Photonics

VNIR imaging
sensor,

Cubert S185
camera

400–
1000

538, 598,
689, 702,
751, 895

lab, field China

[85]
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[89][90]

[91]

[92][93]

[31][32][34]
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419, 420, 422, 473, 642, 690, 722, 756 and 850 nm), i.e., practically in the entire range of the used sensor (380–

1020 nm).

It was assume that, in the experiments on the same section of a field, repeated in different years or seasons,

different important bands will likely be allocated when using automatic selection methods. Unfortunately, at the

moment it is not possible to test this theory, since there are very few articles in which such experiments would be

described.

Summarizing the topic of choosing the important bands for plant disease detection, we assume that it would be

logical to focus on studying the bands of biochemical changes occurring in diseased plants and screening out the

bands not related to the given disease, rather than using machine learning.

To successfully conduct the biological component of experiments on the HRS of plant diseases, it is necessary to

understand that plant diseases are a particular case of plant stress. Plant diseases are processes that occur in

plants under the influences of various reasons and which lead to their oppression and decreased productivity. Plant

diseases are divided into two main groups: infectious and non-infectious . The infectious plant diseases are

caused by microorganisms (mainly fungi, bacteria, viruses and nematodes) or parasitic plants. The non-infectious

diseases can be caused by genetic disorders or physiological metabolic disorders resulting from unfavorable

environmental conditions . Plant diseases almost always have visible symptoms that can be observed in a

certain spectral range. In their early stages, such symptoms appear in the form of various chloroses or, less often,

necrosis or pustules, with a huge variety of manifestations . In the case of an asymptomatic course of the

disease in its early stages, for example barley Ramularia disease caused by Ramularia collo-cygni , Fusarium

head blight of different cereals caused by Fusarium culmorum  or soybean Sudden death caused by Fusarium

virguliforme , early detection by remote sensing can be challenging.

Plant stress is a state of the plant in which it is influenced by unfavorable abiotic (light, heat, air, humidity, soil

composition and relief conditions) and biotic factors (phytogenic, zoogenic, microbogenic and mycogenic). Plant

responses to both abiotic and biotic stress is usually complex and includes both nonspecific (common for different

stressors) and specific components. In a state of stress plants stop their growth, sharply reduce the activity of their

root systems and reduce the intensity of photosynthesis and protein synthesis . In a significant number

of stressful situations, an immune response causes an increase of certain metabolites content, such as jasmonates

or salicylates . These reactions can be detected using hyperspectral sensors 

. The study of plant stress using hyperspectral sensors is presented in a number of works 

, including those comparing the spectral portraits of plants simultaneously exposed to biotic and abiotic stress

. It is necessary to take into account many abiotic factors in addition to the possible influence of

pathogens to accurately determine the reasons for stress manifestation .

The analysis indicates that there is no unified methodology for conducting hyperspectral studies of plant diseases

that takes into account the influence of abiotic factors. That is why it is best to carry out experiments in laboratory

conditions or in industrial greenhouses in order to partially or completely eliminate abiotic factors. Attempts to

create various mobile vehicles operating at ground level whose purpose is to replace natural light sources with

[102][103]

[102][103]

[104][105]

[106]

[76]

[107]

[108][109][110]

[110][111][112][113][114][115] [116][117][118][119]

[120][121][122][123] [124][125]

[126]

[127][128][129][130]

[36][38][39][44][49][60][53][73][74][75][78][79][76][86]



Hyperspectral Remote Sensing and Plant | Encyclopedia.pub

https://encyclopedia.pub/entry/18915 12/28

artificial light when using hyperspectral sensors in field experiments are described in . This

solves one of the main problems associated with the inhomogeneity of the solar spectrum due to changing weather

conditions. Nevertheless, this approach cannot completely solve the problem of the influence of abiotic factors.

It would also be interesting to continue studies describing the definition of the phenotype and/or genotype of a plant

and its influence on changes in the spectral portrait thereof . Several studies reviewed

describe that the host plant genotype has a significant impact on spectral reflectance and on the biochemical and

physiological traits of the plants undergoing pathogen infection . Therefore, it

is very important to indicate the culture and cultivar of the studied plants. The exact indication of pathogens used

for inoculation is also very important. It was believed that comparisons of the spectral portraits of plants of different

cultivars of the same crop is a primary task in creating a general methodology for detecting plant diseases using

hyperspectral sensors. It is possible that the influence of chlorophyll fluorescence on the spectral portraits of plants

and their related SVI may be a significant contribution to the solution of this problem . Success

in this area may allow the creation of patterns for determining phenotypes and plant cultivars within one crop,

which will become the basis for a database of hyperspectral portraits of plants.

If it could confidently detect different types of plant stresses and distinguish plants infected with pathogens from

healthy one and/or those affected by abiotic stresses, it could study the influence of the genotypic characteristics of

a pathogen on the spectral profile of an infected plant. To do this, it is necessary to identify the differences between

plants of the same phenotype as affected by pathogens with different genotypes. Since, for many pathogens,

primarily micromycetes, the intrageneric and even intraspecific diversity is extremely high, it is necessary to

investigate the possible differences in the spectral manifestations of symptoms, for example, between different

species of fungi of the genus Fusarium or between different races of the brown rust pathogen (Puccinia triticina).

The aim of such experiment will be to study the effect of the phenotypic and genotypic diversity of pathogens on

the variability of spectral portraits of host plants. The visual manifestations of symptoms of yellow rust (Puccinia

striiformis) caused by different races or different strains of Fusarium graminearum are often very similar. In the

early stages of the disease, chlorosis caused by pathogens of different species may have similar spectral portraits,

which become more distinguishable in the later stages of the disease, and, thus, is also an important direction for

research . The influence of plant resistance on the symptomatology of

pathogenesis and works describing the difference in the data obtained in such cases is also worth mentioning 

. The determination of resistant cultivars using hyperspectral sensing is also a

promising area of research with great applied potential .

One more direction, which is important for the early detection of plant diseases using HRS, is the study of spectral

portraits of pathogens themselves. Unfortunately, this is only possible for a small number of diseases, such as

wheat powdery mildew caused by Blumeria graminis and wheat yellow rust of wheat caused by Puccinia striiformis,

which show characteristic external symptoms in the early stages. Usually, these are diseases of fungal origin,

where the object of detection is micromycete mycelium or spores on the leaf surface of a diseased plant. Disease

detection by this method is considered in the example of wheat yellow rust, using pure fungal spore spectra as

reference .
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Pest control is also an important aspect of plant protection. It was hypothesized that HRS can also be used to early

detect such dangerous pests as the Colorado potato beetle (Leptinotarsa decemlineata), sunn pest (Eurygaster

integriceps) , or western corn rootworm (Diabrotica virgifera virgifera), using spectral portraits of imago and

different ages of larvae. Currently, a small number of works have been published on this topic 

, but we consider this direction to be very promising, especially for use in industrial greenhouses. Another

possible direction of research is the detection of local outbreaks of pests outside farmlands, for example, locusts

(Acridoidea) or beet webworms (Loxostege sticticalis), in order to eliminate them early before these pests can

cause damage to yields.

It was believed that the effect of biochemical changes in plant tissues is critical for the early detection of plant

diseases using passive sensors. The reflectance of light from plants leaves is dependent on multiple biophysical

and biochemical interactions. The VIS range (400–700 nm) is influenced by pigment content. The NIR range (700–

1100 nm) is influenced by leaf structure, internal scattering processes and by the light absorption by leaf water. The

SWIR range (1100–2500) is influenced by chemicals and water composition .

The most investigated areas in this topic are the determination of changes in the content of water, nitrogen (N) in

plants, as well as of chlorophyll or carotenoids, using various SVIs, which can be used to detect plant diseases.

These techniques can be used to determine the nitrogen content of plants  and to detect plant stresses

and diseases , including the early detection of plant diseases and pest infestations 

.

The topic of detecting individual chemical elements or chemical compounds, including volatiles, in plants is a less

studied problem. In plant physiology, such elements are of great importance, such as nitrogen (N), one of the key

components for chlorophyll; phosphorus (in the monovalent orthophosphate form H PO ), a key macronutrient;

potassium (K ), influencing leaf color; calcium (Ca ), which plays a fundamental physiological role in leaf structure

and signaling; magnesium (Mg ), an essential macronutrient for photosynthesis (as it is the central atom of

chlorophyll); sulfur (S), in the form of sulfate; iron (Fe  or Fe ), copper (Cu ), manganese (Mn ) and zinc (Zn ),

which are essential elements for plant growth and components of many enzymes; and the ions responsible for

salination: Na , K , Ca , Mg  and Cl  . The detection of these elements by HRS can be a key factor for

identifying plant diseases at an early stage, since plant diseases are accompanied by a deficiency of some of the

listed elements, which is the cause of chlorotic and necrotic changes in plant tissues . Unfortunately, this task is

difficult and poorly studied, but the following works prove the possibility of determining the chemical composition of

plants in the VIS, NIR and SWIR ranges. Pandey et al. detected a wide range of macronutrients, namely N, P, K,

Mg, Ca and S, and micronutrients, namely Fe, Mn, Cu and Zn, in maize and soybean plants . Zhou et al.

detected cadmium (Cd) concentrations in brown rice before harvest . Ge et al. tried to analyze chlorophyll

content (CHL), leaf water content (LWC), specific leaf area (SLA), nitrogen (N), phosphorus (P) and potassium (K)

in maize using different SVIs but succeeded only with CHL and N . Hu et al. proved to determine the content of

Ca, Mg, Mo and Zn in wheat kernels .
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The most difficult and interesting direction is the detection of the content of not individual elements, but more

complex chemical compounds using HRS. As an example of such works, one can cite the articles by Gold et al.,

where the mechanisms of physiological changes in potato plants were considered when inoculated by Alternaria

solani and Phytophthora infestans pathogens in the analytical example of the contents of foliar nitrogen, total

phenolics, sugar and starch . Fuentes et al. monitored the chemical fingerprints of different leaf samples and

studied the correlation of aphid numbers in wheat plants with the presence and quantity alcohol, methane,

hydrogen peroxide, aromatic compounds and amide functional groups compounds . The paper  presented

results on the implementation of SWIR HRS (1596–2396 nm) and a low-cost electronic nose (e-nose) coupled with

machine learning. The authors believe that such study of plant physiology models open their use to assessing

models of other biotic and abiotic stress effects on plants. Thus, the search for plant diseases at early stages using

passive sensors, including hyperspectral ones, should be carried out in three main directions: the search for the

characteristic immune response of the host plant to the pathogen, the search for characteristic symptoms of plant

damage by the pathogen or the search for spectral portraits of the pathogen or pest itself. It is always necessary to

take into account other stress factors affecting the spectral portrait of a diseased plant, which will allow us to

accurately determine plant diseases using passive remote sensing.

Further development of experiment planning should be considered, preferably using a common methodology, so

that there is an opportunity to adequately compare the results. An experiment tree, which will consider the

physiological parameters of the plant should be designed . All phases of the experiment should be considered

and planned in advance, on the basis of the science of experiment planning, which is sufficiently well developed for

applied physical research, based on the methods of probability theory and mathematical statistics. The following

research phases for each type of sensors should be developed: laboratory research in deterministic conditions of

deterministic parameters; the allocation of spectral bands responsible for certain parameters of plants (including

diseases) in laboratory experiments; repetition (possibly multiple) of a laboratory experiment to collect statistics and

validate; transfer of the experiment to field conditions to verify the correctness of the selected spectral bands. Such

planning of experiments and the creation of a methodology for conducting them fills in the gaps associated with the

lack of consideration of such factors as: different phenotypes of plants and their different spectral responses;

various diseases and also their different spectral responses; the need to create and take into account a model of

light propagation from an irradiating source to normalize hyperspectral imagery data .
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