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Zero-shot semantic segmentation (ZS3), the process of classifying unseen classes without explicit training samples,

poses a significant challenge. Despite notable progress made by pre-trained vision-language models, they have a

problem of “supervision leakage” in the unseen classes due to their large-scale pre-trained data.
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1. Introduction

Semantic segmentation is at the foundation of several high-level computer vision applications such as autonomous

driving, medical imaging, and other areas involving identification and classification of objects within an image. Deep

supervised learning has been instrumental in driving advancements in semantic segmentation . However, fully

supervised methods often require extensive labeled image databases with pixel-level annotations. They are typically

designed to handle a pre-defined set of classes, restricting their application in diverse, real-world scenarios.

Some weakly supervised semantic segmentation (WSSS) approaches have been proposed for the above situation. These

methods capitalize on easily accessible annotations like scribbles , bounding boxes , and image-level labels  and

generate pseudo-ground-truths through visualization techniques . However, this approach still relies on a certain

degree of labeled data and needs to retrain the entire model if there are some new classes.

Humans possess an intuitive ability to recognize and classify new classes based solely on descriptive details, a powerful

skill that current machine learning systems have yet to emulate fully. This observation has catalyzed the exploration of

zero-shot semantic segmentation (ZS3) .

ZS3 aims to exploit the semantic relationships between image pixels and their corresponding text descriptions, predicting

unseen classes through language-guided semantic information of the respective classes rather than the dense

annotations. ZS3 techniques are broadly divided into generative and discriminative methods . Generative ZS3 methods

 usually train a semantic generator network which maps unseen class language embeddings into the visual feature

space and fine-tunes the pre-trained classifier on these generated features. While these generative methods have

demonstrated impressive performance, their effectiveness could be improved by a multi-stage training strategy.

Discriminative methods directly learn the join embedding spaces for visual and language, like SPNet  and map the

visual feature to the fixed semantic representations, bridging the gap between visual information and its corresponding

semantic understanding. Similarly, JoEm  was proposed to optimize both the visual and semantic features within a joint

embedding space.

2. Zero-Shot Semantic Segmentation with No Supervision Leakage

Semantic Segmentation: Semantic segmentation has made significant progress with the advent of deep learning

technologies. Chen et al. , Long et al. , Ronneberger et al. , and Zhao et al.  have leveraged deep learning

architectures to enhance the performance of semantic segmentation, making it more accurate and efficient. and fully

supervised semantic segmentation, operate under the assumption of pixel-level annotations throughout all training data.

The DeepLab model has notably augmented segmentation performance on renowned datasets like PASCAL VOC2012

 and MS-COCO , employing sophisticated techniques such as multiple scales  and dilated convolution .

Other algorithms, such as UNet  and SegNet , have also demonstrated commendable performance using a diverse

set of strategies.
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Furthermore, the transformative potential of the vision transformer (ViT) , as the pioneer in deploying transformer

architecture for recognition tasks, cannot be overstated. Concurrently, the Swin Transformer took a leap forward,

extrapolating the transformer’s capabilities for dense prediction tasks and achieving top-tier performance in the process.

However, it must be acknowledged that these cutting-edge methods are heavily reliant on costly pixel-level segmentation

labels and presuppose the presence of training data for all categories beforehand.

In the quest to circumvent these obstacles, weakly supervised semantic segmentation (WSSS) methods have emerged,

leveraging more readily accessible annotations such as bounding boxes , scribbles , and image-level labels . A

cornerstone in prevailing WSSS pipelines is the generation of pseudo-labels, chiefly facilitated by network visualization

techniques such as class activation maps (CAMs). Some works employ expanding strategies to stretch the CAM ground-

truth regions to encapsulate entire objects. Still, obtaining pseudo-labels that accurately delineate entire object regions

with fine-grained boundaries continues to pose a significant challenge .

Zero-shot semantic segmentation: Zero-shot semantic segmentation (ZS3) models are primarily categorized into two main

types: discriminative and generative. Discerning the nuances within these two categories provides a comprehensive

understanding of the current strategies utilized in the field.

Discriminative methods encompass several noteworthy studies. For instance, Zhao et al.  pioneered a groundbreaking

study that proposed a novel strategy for predicting unseen classes using a hierarchical approach. This strategy represents

an effort to build upon the data’s inherent structure, using hierarchies to draw insights into unseen classes. Another study,

SPNet , adopted a different approach by leveraging a semantic embedding space. Here, visual features are mapped

onto fixed semantic representations, bridging the gap between visual information and its corresponding semantic

understanding. Similarly, JoEm  was proposed as a method that aligns visual and semantic features within a shared

embedding space, thereby fostering a direct correlation between these two aspects.

On the other hand, some studies explore the generative landscape of ZS3. ZS3Net , for example, employed a

Generative Moment Matching Network (GMMN) to synthesize visual features. However, this model’s intricate three-stage

training pipeline can potentially introduce bias into the system. To mitigate this issue, CSRL  employed a unique

strategy that leverages relations of both seen and unseen classes to preserve these features during synthesis. Likewise,

CaGNet  introduced a channel-wise attention mechanism in dilated convolutional layers, facilitating the extraction of

visual features.

Recently, some works have explored the large-scale pre-trained model in zero-shot semantic segmentation .

Furthermore, the pre-trained data usually contain both seen and unseen labels (e.g., CLIP, WebImageText 400M) and

have a supervision leakage problem. Supervision leakage is a crucial concern in machine learning, referring to the

unintended incorporation of information about unseen classes during the training phase. Given that CLIP models are

trained on a massive scale of approximately 400 million image–text pairs, it is conceivable that the text labels could

encapsulate a diverse range of seen and unseen classes. Consequently, these models might unintentionally learn unseen

classes during training, thus creating a form of supervision leakage. This situation could compromise the integrity of the

zero-shot learning task, as the models are no longer genuinely learning from a “zero-shot” perspective.

In response to this significant challenge, the research introduces a distinct solution that effectively navigates the

complexities of zero-shot learning while eliminating the risk of supervision leakage. By doing so, people enhance semantic

segmentation models’ reliability and adaptability. The approach offers a robust framework to accurately process and

categorize visual data in a genuinely zero-shot learning context. People envisage this method, free of supervision

leakage, becoming a cornerstone for future research and advancements in semantic segmentation. The work paves the

way for more authentic and reliable zero-shot learning models, fostering a more resilient future for semantic segmentation

in computer vision.

Visual-language learning: The domain of image–language pair learning has undergone a significant transformation

marked by exponential growth. Several contributions have shaped the field, such as CLIP  and ALIGN . Both

models, pre-trained on hundreds of millions of image–language pairs, have marked substantial advancements in the field,

pushing the boundaries of what is possible in image–language learning. Considering this, Yang et al.  put forth a unified

contrastive learning method, successfully integrating both image–language techniques and image-label data. This method

stands as an emblem of how these techniques can be effectively harnessed to push the frontier of the field further. In the

ever-evolving domain of zero-shot learning, CLIP-based methods  have been recognized for their

substantial contributions and potential to provide effective solutions. These models capitalize on the strength of large-
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scale image–text pair datasets to deliver remarkable performance. However, a critical challenge that potentially

undermines the legitimacy of their zero-shot learning capabilities is the risk of supervision leakage.
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