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Magnesium alloys are a strong candidate for various applications in automobile and aerospace industries due to

their low density and specific strength. Micro-alloying magnesium with zinc, yttrium, and cerium enhances

mechanical properties of magnesium through grain refinement and precipitation hardening. 

thermodynamic modeling  magnesium  phase diagram  liquidus projection

1. Introduction

Micro-alloying magnesium with RE such as zinc and yttrium resulted in promising mechanical properties 

. Furthermore, the addition of RE elements to Mg-Zn promote activation of prismatic slip and increase the

stacking fault energy, therefore weakening the texture of magnesium alloys . Micro-

alloying magnesium with zinc increases its fluidity in casting , whereas yttrium addition has a remarkable effect

on aging precipitation and high solid solution strengthening . Moreover, cerium tends to precipitate a

thermally high stable compound (Mg Ce) in magnesium rich region, which improve microstructure stability at

elevated temperatures. Diluting zinc in Mg-Ce alloy significantly improves stretch formability by modifying the basal

plane texture through solid solution hardening mechanism . Moreover, the highest zinc in Mg-Ce

alloy improves yield strength and ultimate tensile strength through precipitation of intermetallic compounds.

Whereas the ratio of Ce/Zn increases, grain refinements and loss of formability occurs .

Mg-Zn-Y alloys display promising mechanical properties because of precipitates of thermally stable ternary

compounds (W-Mg Y solid solution, I-Mg YZn , and LPSO-phase Mg ZnY) as well as high solubility of yttrium in

magnesium.

To better understand phase stability, phase relation, and the effect of precipitation on age hardening, knowledge of

binary and ternary phase diagrams is essential. Additionally, accurate prediction of phase diagram plays an

important role in materials development and alloy design. Phase diagram is a tool used to predict the equilibrium

phase(s) and phase(s) percentage at certain temperatures for specified alloys and simulate the phase consistency

and solidification process of individual alloys. Moreover, the percentage of the predicted phase(s) that exist in the

microstructure can be calculated. 

2. Zinc-Yttrium Phase Diagram
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In the work of , tantalum containers were unsuccessful because of the penetration of Y-Zn liquid at high zinc

contents. Mason and Chiotti  reported three intermetallic compounds that melt congruently: YZn, YZn , and

Y Zn  (YZn ) at 1105, 1080, and 890 °C, respectively. Thermodynamic modeling of Y-Zn binary phase diagram

in the work of  presented a polymorphic transformation in the YZn  at 750 °C, which is in accord with 

. Mason and Chiotti  found five intermetallic compounds that decompose peritectically: YZn ,

Y Zn  (YZn ), Y Zn  (YZn ), YZn , and YZn  at 905, 896, 882, 872, and 685 °C, respectively. Mason and

Chiotti  determined the thermodynamic properties of the intermetallic compounds using dewpoint method. The

large number of intermetallic compounds found in the RE-Zn system was similar and related to RE-coordination

number . Crystal structure data of Y-Zn compounds were determined by . Gibbs energy of formation

of the intermediate compounds in the Y-Zn system was investigated by . The most accurate

description of Y-Zn binary phase diagram was established by Zhu and Pelton  based on experimental data 

as shown in Figure 1 and Figure 2. The optimized Y-Zn phase diagram presented by Zhu and Pelton 

presented some amendment to the work of Spencer et al. . The calculated enthalpy and Gibbs energies of

formation of the intermetallic compound presented in the work of  are in good agreement with the experimental

data of .

Figure 1. Yttrium–zinc phase diagram .
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Figure 2. Yttrium–zinc phase diagram in Zn-rich region .

3. Mg-Zn, Mg-Y, and Mg-Ce Phase Diagrams

Liquid phase in the work of  was optimized using the modified quasi-chemical model (MQM). This model has

been used to describe the liquid phase as this is the only scientific model that accounts for the presence of short-

range ordering. Therefore, the reported phase diagrams in the work of  adequately describe thermodynamic

properties of these systems. Islam et al.  critically reviewed and assessed thermodynamic data and phase

diagrams of Mg-Zn, Mg-Y, and Mg-Ce systems. Figure 3, Figure 4 and Figure 5 presented the most accurate

calculated binary phase diagrams for these systems . It is worth mentioning that the liquid phase was optimized

using a modified quasi-chemical model to accurately describe short range ordering in the liquid.
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Figure 3. Mg-Zn phase diagram .

Figure 4. Mg-Ce phase diagram .
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Figure 5. Mg-Y phase diagram solid lines  in comparison to  showed in dotted line .

4. Magnesium-Zinc-Yttrium Ternary Phase Diagram

Liquidus projections of the ternary Mg-Zn-Y phase diagram reported by Gröbner et al.  and Zhu and Pelton 

are shown in Figure 6a,b, respectively.

Figure 6. Liquidus projections of the ternary Mg-Zn-Y phase diagram; (a) Gröbner et al.  and (b) Zhu and Pelton

.

5. Mechanical Properties of Mg-Zn-{Ce, Y} Alloys
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Alloying Mg-Zn with rare earth elements is promising in modifying magnesium texture. Among rare-earth element,

many researchers reported that micro-alloying Mg-Zn with yttrium or cerium exhibited a comparable ductility and

formability with commercial magnesium alloys. Table 1 and Table 2 summarize the mechanical properties of the

published alloys in Mg-Zn-Y  and Mg-Zn-Ce , respectively.

Table 1. Mechanical properties of Mg-Zn-Y alloys.

Table 2. Mechanical properties of Mg-Zn-Ce alloys.

[51][52][53][54] [55][27][22][26][53][54][56]

Nominal
Composition

(wt.%)

Yield
Strength

(MPa)

Ultimate
Tensile

Strength
(MPa)

Ductility Process Conditions

Mg-2Zn+0.4Y 160 240 30%
Samples were cast at 690 °C and then extruded at

310 °C 

Mg-14.4Zn-3.3Y 365 ± 3.5 380 8%
Samples were cast and solutionized at 480 °C for
24 h followed by extrusion at 430 °C, then aged at

150 °C 

Mg-14.4Zn-3.3Y 171 320 12
Samples were cast and solutionized at 480 °C for

24 h followed by extrusion at 430 °C 

Mg-1.5Zn-0.2Y 135 238 17%
The ingots were homogenized at 450 °C for 12 h,

then rolled at 400 °C, and after that sheet
annealed at 350 °C for 1 h 

Mg-6.0Zn-1.0Y 268.3  12.9%
Alloys were solutionized at 480 °C and then

extruded at 390 °C 

Mg-6.0Zn-1.0Y 288.7  17.3%
Alloys were solutionized at 480 °C and then

extruded at 390 °C and aged at 150 °C for 48h 

Mg-3.0Zn-0.5Y 262 18.3%  
Alloys were solutionized at 480 °C and then

extruded at 350 °C 
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Nominal
Composition

(wt.%)

Yield
Strength

(MPa)

Ultimate
Tensile

Strength
(MPa)

Ductility Process Conditions

Mg-2Zn+0.4Ce 190 255 18%
Samples were cast at 690 °C and then extruded at

310 °C 

Mg-2Zn-0.2Ce
(ZE20)

69 170 31%
Samples were cast at 700 °C and then extruded at

400 °C 

Mg-5Zn-0.2Ce
(ZE50)

135 247 15%

Mg-8Zn-0.2Ce 136 289 16%

[55]

[55]
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Nominal
Composition

(wt.%)

Yield
Strength

(MPa)

Ultimate
Tensile

Strength
(MPa)

Ductility Process Conditions

(ZE80)

Mg-1.5Zn-
0.2Ce

140 240 19%
The ingots were homogenized at 450 °C for 12h, then
rolled at 400 °C and after that sheet annealed at 350°

C for 1 h 

Mg-6Zn-0.2Ce 225 270 30%
Alloys were cast at 750 °C and homogenized at 350

°C for 12 h. After extrusion, alloys aged at 175 °C
from 0.5 to 80 h 

Mg-2%Zn-
0.5%Ce (ZE20)

199.2 ~245 6%
Samples were prepared by continuous casting, then
homogenized at 823 K for 8 h. Sheets were rolled by

conventional rolling at 673 K 

Mg-2%Zn-
0.5%Ce (ZE20)

125 ~235 13.8%

Samples were prepared by continuous casting, then
homogenized at 823 K for 8 h. Sheets were rolled by
conventional rolling at 673 K. Sheets were annealed

at 673 K 

Mg-2%Zn-
0.5%Ce (ZE20)

~170 ~240 28.23

Samples were prepared by continuous casting, then
homogenized at 823 K for 8 h. Sheets were rolled by
packed rolling at 673 K. Sheets were annealed at 673

K 

Mg-2%Zn-
0.5%Ce (ZE20)

~165 ~236 33.4%

Samples were prepared by continuous casting, then
homogenized at 823 K for 8 h. Sheets were rolled by
packed rolling at 723 K. Sheets were annealed at 723

K 

Mg-0.5Zn-
0.2Ce

133 213 25%

Samples were heated at 723 K for 20 min and sheets
were rolled by unidirectional rolling at 353 K. Then,

sheets were annealed at 623 K for 90 min 

Mg-1.0Zn-
0.2Ce

110 202 23%

Mg-1.5Zn-
0.2Ce

116 206 29%

Mg-2.0Zn-
0.2Ce

118 222 25%

Mg-2.5Zn-
0.2Ce

131 228 16%

Mg-1.5Zn-
0.2Ce

153 231 26%
Samples were extruded at 703 K and then annealed

at 623K for 90 min 
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The addition of yttrium to Mg-Zn alloys enhances the formation of magnesium solid solution in ternary systems due

to high solid solubility of yttrium in magnesium. Meanwhile, precipitation of nano-scale ternary phases as a result

enhances mechanical properties. 
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