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Similar to other subtypes of EVs (extracellular vesicles), MitoEVs (mitochondrial extracellular vesicles) are altered
in several diseases, including cancer, neurodegenerative disorders, and cardiovascular disease. MitoEVs contain a
variety of molecular components from releasing cells, including proteins, lipids, and nucleic acids, which may serve

as indicators of disease status.

MitoEVs mitochondria extracellular vesicles

| 1. Cancer

The search for new methods to diagnose cancer in its early stages and distinguish between states of the disease
has led to the development of liquid biopsies. The analysis of body fluids such as blood or urine to gather
information about a person’s cancer status has emerged as a powerful tool for cancer diagnosis, prognosis, and
treatment monitoring, as it allows for the detection of cancer-related genetic alterations in a minimally invasive

manner 12,

Cancer cells often release various types of molecules into the bloodstream, including DNA, RNA, and proteins &I,
These molecules can be used to detect cancer cells and track their progression over time. The results of a liquid
biopsy can provide important information about the type and stage of cancer, as well as help monitor the

effectiveness of the treatment and detect the early signs of cancer recurrence 2.

The analysis of EVs (extracellular vesicles) in liquid biopsies has emerged as a novel method to provide new
insights into the role of EVs in several diseases, as the content in EVs varies across disease status . Currently,
the main application of the analysis of EVs in liquid biopsies is in the detection and characterization of cancer-
specific biomarkers BBl This approach offers several advantages over traditional diagnostic methods, such as
tissue biopsy or imaging. Firstly, EVs are readily available in the bloodstream, making liquid biopsy with EVs a
minimally invasive and convenient option for cancer diagnosis and monitoring. Secondly, EVs contain a wealth of
information about cancer cells, including their genetic and epigenetic alterations, which can provide valuable

insights into cancer’s biology, progression, and treatment response €.

The mitochondria, the cellular organelles responsible for energy production, have emerged as crucial players in the

development and progression of cancer. Growing evidence links mitochondrial dysfunction to various aspects of
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cancer biology, including metabolism, apoptosis, and signaling pathways . In this context, it has been shown that

cancer cells release EVs that contain specific mitochondria-derived molecules, such as proteins or mtDNA [EI2I[10],

mtDNA present in EVs has an important role in cancer biology and progression, making it an interesting source in
cancer diagnosis. mtDNA transfer between cancer cells acts as an oncogenic signal, promoting the escape of cells
from metabolic quiescence 1. Similarly, mtDNA contained in metastatic tumor cells is transferred to low-metastatic
tumor cells via MitoEVs (mitochondrial extracellular vesicles), enhancing the metastatic potential during tumor
progression 2. In a more recent study, the authors showed that the protein PINK1 mediates the packaging of
MtDNA in EVs from cancer cells and that this mtDNA can promote invasiveness through the activation of Toll-like

receptor 9 in recipient cells (23],

Some studies have proposed that MitoEVs could serve as new biomarkers of cancer. Jang et al. discovered that
EVs released by melanoma tissue contain higher levels of mitochondrial membrane proteins when compared with
non-cancerous cells. In addition, they found that patients with melanoma or other types of cancer such as ovarian
or breast cancer have a higher concentration in the plasma of these MitoEVs 14l Regarding mtDNA, it was
recently shown that patients with pancreatic ductal adenocarcinoma have a higher enrichment of mtDNA in
circulating EVs, detecting specific mtDNA mutations that could serve as a tool for early cancer detection 13,
Moreover, mtDNA contained in MitoEVs obtained from the plasma exhibit different characteristics among patients
with hepatocellular carcinoma, hepatitis, or healthy individuals, indicating a potential role as a diagnostic biomarker

in these conditions [16],

| 2. Other Diseases

Although cancer is currently the most studied disease in terms of liquid biopsies and MitoEVs, recent studies have
found that the content in MitoEVs can be altered in other diseases, such as neurological or cardiovascular
conditions 17,

Multiple lines of evidence suggest that mitochondrial dysfunction plays a key role in the pathogenesis of
Parkinson’s disease (PD). Post-mortem studies have shown that there is a reduction in the number and size of
mitochondria in the substantia nigra region of PD patients’ brains [28. Additionally, there is evidence of decreased
mitochondrial respiratory chain activity and increased ROS generation in PD patients 191, Furthermore, mutations
in genes that regulate mitochondrial function, such as PINK1 and Parkin, are associated with some forms of PD
(201 Recently, it was shown that these proteins are involved in mitochondrial quality control through the regulation of
mitochondria-derived vesicle trafficking (21122, Along with these results, a clinical study with PD patients suggested
that circulating EVs were altered in the disease; more specifically, they found that a specific mitochondrial signature

was present in these patients 23],

Another neurological condition characterized by mitochondrial dysfunction is Down syndrome (DS). Patients have
impairments in mitochondrial function, which leads to a decrease in energy production that may contribute to the

cognitive impairments seen in individuals with Down syndrome 241, Additionally, studies have shown that people
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with Down syndrome have an increased susceptibility to oxidative stress [22l. A recent study that presents a new
approach to isolate and separate EV subpopulations from the brain extracellular matrix, identifies a unique subset
of EVs of a mitochondrial origin, which they term mitovesicles. The authors found that the number and composition
of brain mitovesicles are altered in individuals with DS, indicating their possible role in the neuropathological

process [28],

In cardiovascular disease, mitochondrial dysfunction has been linked to the development of key pathological
changes such as heart failure or atherosclerosis 2428 MitoEVs regulate mitochondrial quality control in the
cardiovascular system 2289 and serve as pro-inflammatory signaling between monocytes and endothelial cells in
cardiovascular disease [l This particular subtype of vesicles has a crucial role in the maintenance of
mitochondrial homeostasis in the heart, as cardiomyocytes release dysfunctional mitochondria taken up by resident

macrophages 22,

Thereby, MitoEVs can be detected in biological fluids and seem to play a role in the regulation of mitochondrial
biology and intercellular communication, making them an interesting subtype of EVs that could be used as

diagnostic markers for several diseases (Figure 1 and Table 1).
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Figure 1. Graphical explanation of the potential therapeutic and diagnostic use of large and small MitoEVs. Larger
MitoEVs refer to EVs that are shed from the plasmatic membrane of the cell and can include whole mitochondria;

these EVs are particularly interesting in the field of mitochondrial transfer as therapeutic vehicles. Small MitoEVs
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are included in MVB (multivesicular bodies) previous to their release and contain material from the mitochondrial

origin (mMtDNA and proteins); its analysis may serve as a diagnostic tool in liquid biopsies.

Table 1. Summary of applications of MitoEVs in human diseases, regarding the sources of the vesicles and the key

findings in different studies.

Application Disease

Melanoma, ovarian
and breast cancer

Pancreatic ductal
adenocarcinoma
Diagnosis

Hepatocellular
carcinoma and
hepatitis

Parkinson'’s
disease

Therapy Myocardial

ischemia-
reperfusion injury

Brain ischemia

Limb ischemia

Lung ischemia-
reperfusion injury

Acute kidney injury

Doxorubicin injury
to cardiomyocytes

Source

Plasma

Plasma

Plasma

Plasma

Healthy cells

Xenogenic and
muscle
mitochondria,
MSCs

Healthy cells

Healthy cells

Healthy cells

MSCs

Findings

Mitochondrial protein enriched EVs
from cancerous cells are present at
higher concentrations in patients’
plasma

EVs from mitochondria carrying
specific mtDNA mutations from cancer
cells are present can be detected in
patients’ plasma

mtDNA profile in plasma MitoEVs
differs between patients with
hepatocellular carcinoma, hepatitis,
and healthy individuals

Circulating EVs from PD patients have
a specific mitochondrial signature

Mitochondrial transfer improved tissue

regenerative capacity, enhanced ATP

production, improved cell viability, and
reduced pro-inflammatory markers

Mitochondrial transfer improved
neurogenesis, and reduced pro-
inflammatory markers, oxidative stress
and apoptosis

Mitochondrial transplantation improved
tissue regenerative capacity,
enhanced ATP production, improved
cell viability, and reduced pro-
inflammatory markers

Mitochondrial transplantation improved
tissue regenerative capacity

Intra-arterial mitochondrial
transplantation improved tissue
regenerative capacity

Mitochondria-rich EVs improve cell
viability in induced cardiomyocytes
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Application Disease Source Findings References

from patients with doxorubicin injury

Mitochondrial transfer improves

Alzheimer’s .
. Healthy cells cognition and lower neuronal loss and (41]
disease o
gliosis in mice
. Mitochondrial transplantation restored
! : Allogenic and . . .
Parkinson’s : mitochondrial function and attenuated [42]
: xenogenic o
disease 6-hydroxydopamine-induced

mitochondria o
neurotoxicity in mice

Mitochondrial M.ltochondr.lal tr_ansfer can improve [43][44][45]
I — Healthy cells mitochondrial bioenergetics in cells [46]
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