

Damaging Behaviours and Health in Laying Hens

Subjects: **Agriculture, Dairy & Animal Science**

Contributor: Renata Relic , Virginie MICHEL , , Inma Estevez , Evangelia N. Sossidou , Maryse Guinebretiere

Animals' behavior and their health are directly related. In intensive breeding systems, animals often develop damaging behaviors. The reasons for the occurrence are most often the consequences of farm breeding conditions in which the living needs of animals are not fully met. Harmful behaviors in laying hens have been studied for a long time, to find the best possible compromise between the breeding system and the living needs of poultry.

hen health

damaging behaviour

laying hens

1. Health of Laying Hen Flocks

There are many ways to define the health of productive animals. Considering the World Health Organisation definitions of 1946 and 2006, health is "a state of complete physical, mental and social well-being and not just the absence of disease or infirmity". Animal health can be defined as "a lack of disease or normal functioning of the animal body and normal behaviour" [1]. In the production sector, Gunnarson [2] defines health as "the state of the animal organism that allows highest productivity based on a balance between animals and their environment, as well as the animal's physical well-being". The vision of One Health is that human health can be better protected through policies that ensure the health of animals and of ecosystems since human, animal, and environmental health are all interconnected [3]. Within the One Health framework, animal welfare offers opportunities to define the conditions for animals to grow healthily and to be able to cope with pathogens while reducing the need for the use of antibiotics. Such conditions are defined by the animals' behavioural needs that have been shaped by their own evolutionary history and are deeply imbedded in their genetic makeup. Understanding the factors that affect the social behaviour of laying hens [4][5][6], or their responses to the features of their surrounding environment [7][8][9], provides the scientific information needed to manage flocks according to these biological needs, to avoid sources of potential stressors, and to reduce the risk of damaging behaviour. This type of holistic approach will help to preserve animal health and welfare while allowing optimal animal performance in modern animal production systems. From the definitions of health cited above, researchers can see that they include the mental state of an animal and that both physical and mental health can be captured in the term "welfare".

2. Damaging Behaviours in Laying Hens

2.1. Pecking Behaviours in Chickens

Pecking is a natural behaviour in chickens during foraging and exploration of the environment. When a chicken pecks a conspecific, a distinction is made between pecking arising from aggressive or non-aggressive motivations, as the body parts targeted and risk factors for the behaviour differ. Non-aggressive injurious pecking is considered a redirected form of foraging behaviour, as both pecking during feeding and injurious pecking show similar fixed motor patterns [10]. An association has been found between the high occurrence of litter-directed pecks by individuals when they are young and a high level of severe feather pecking and litter-directed pecks when they are adults [10]. This suggests that severe feather pecking is not a direct substitute for foraging but that some individuals have high pecking motivation overall and are, thereby, more prone to develop injurious pecking in addition to foraging.

In cage-free systems, hens have greater behavioural opportunities and freedom of movement, but these systems may also be associated with a greater risk of damaging behaviours as compared to cages [11][12]. Even though these behaviours can still happen in cages, they are limited to the cage where they develop.

2.2. From Pecking Behaviour to Damaging Behaviour

Damaging behaviours represent a collection of unwanted behaviours that develop under certain circumstances at high frequency and intensity in laying hens, other poultry species, and avian species [13] and can cause harm to other group members. They include feather pecking [14][15][16], aggressive pecking [17] (outside of the frame of hierarchy establishment), different forms of cannibalism [18][19][20], which include vent/cloacal pecking [16][21], and toe pecking [22][23].

Gentle feather pecking is a frequent behaviour in young birds and is also important in social recognition. In adult birds, stereotyped gentle feather pecking can be observed, where birds, for instance, spend a long time pecking at the tips of the tail feathers of another bird. Although this behaviour indicates a welfare problem for the pecker, it usually does not lead to much feather damage [19][24]. The main problematic behaviour is severe feather pecking, directly affecting the health of the hens—several feathers are lost, or whole stripping of certain areas of the body is observed. This is associated with pain in the affected hen [25] and can cause skin eruption or bleeding. Severe cases of feather pecking can escalate into cannibalism and death of the bird victim, cannibalistic tissue pecking, and vent/cloacal pecking, potentially leading to severely wounded or dead birds [19][20][24].

Cannibalistic behaviour involves beak-inflicted damage followed by the consumption of blood and tissues of conspecifics while they are still alive or after death [26]. Cannibalistic behaviour is learned by individual birds and can spread to others through social learning [26], even through adjacent cages [27]. Severe feather pecking can lead to increased risks of cannibalism [28]. Cannibalism in the cloacal area, also known as “vent pecking”, is considered a distinct form of cannibalistic pecking [16] and may negatively affect the welfare and health of the bird by causing considerable pain and even leading to mortality [29]. Serious inflammatory and even infectious processes can follow skin breakage. Toe pecking is another behaviour that is harmful to victims and that negatively affects hen health. It occurs when a bird starts to peck the toes of another bird [22][23]. In severe forms, toe swelling can be attributed to cannibalism, and complications may be lethal [30].

2.3. Main Causes of Damaging Behaviour and Control Strategies

Regarding the causal factors leading to feather pecking, a classical hypothesis suggests that it is a redirected form of foraging that develops in the absence of foraging material [31][32][33][34]. The hypothesis is that under commercial conditions where chicks are reared in the absence of their mother's guidance, the direction of foraging pecks toward flock mates could result from a chick's failure to learn to direct these pecks toward appropriate substrates and food items. In addition, the absence of suitable manipulable foraging material can lead to injurious pecking in chicks [10]. In a review, De Haas et al. [10] explored how behavioural programming via prenatal conditions (role of maternal stress, egg conditions, incubation settings) and early postnatal conditions (chick brooding conditions) could influence the development of injurious pecking in laying hens. This review argues that it may be possible to prevent injurious pecking in commercial laying hen flocks by adapting the environmental conditions of previous generations, optimising incubation conditions, reducing stress around hatching, and guiding the early learning of chicks.

Damaging behaviour can emerge at different ages in most breeds, although with varying intensity depending on the genetic line [8], and can affect a large number of birds in the flock. Reported percentages of affected flocks at the end of lay can reach values as high as 60% of the flocks, with more than 10% of hens having moderate or severe feather damage in one body region [35], or 86% of the flocks in which severe feather pecking was observed [36].

Although no strategy can guarantee the complete absence of pecking behaviours, optimised management practices, especially concerning feeding, lighting, and climatic conditions [9] and environmental enrichment in pullets and adult birds [37][38][39], can help to reduce the risk. Access to outdoor free-range areas is associated with plumage preservation [7][40][41] and a reduced risk of injurious pecking [42]. Genetic selection at the commercial scale will help in the control of feather pecking [15][18][43]. For instance, Rodenburg et al. [44] offer various genetic means to limit feather pecking, cannibalism, and vent/cloacal pecking based on the systematic selection of birds with less-pronounced damaging behaviours than other birds.

Another hypothesis suggests that mild feather pecking could be a redirected form of social grooming and may have a social recognition function [45]. Kjaer et al. [46][47] suggest that severe feather pecking is related to neurological changes that cause hyperactivity, although Krause et al. showed that selection for high locomotor activity did not result in an increase in feather pecking [48]. Recent studies found that genes involved in cholinergic signalling, channel activity, synaptic transmission, and immune response are involved in feather-pecking mechanisms [43].

Although Borda-Molina et al. did not find any relations between microbiota and feather pecking [49], there is growing evidence that gut microbiota influence hens behaviour and physiology [50][51]. However, whether microbiota can influence the development of feather pecking is not fully demonstrated [51][52]. This shows the complexity of the situation, involving the modulation by the gut microbes of the immune system, or maybe brain function not modulated through the immune system.

The way neurophysiology, gut physiology, and health in a broader sense impact the development of damaging behaviours in layers is described in the chapter below, immediately followed by the description of how, in return, the consequences of damaging behaviours will impact the health and welfare of animals.

3. Inter-Relationships between Damaging Behaviours and Health Problems in Current Housing Systems for Layers

3.1. Recent Knowledge about the Impact of the Health Condition, Including Immune Status of Animals, on the Occurrence of Damaging Behaviours

3.1.1. Immune System

The immune system plays a critical role in brain development. In particular, microglia (macrophage-like immune cells in the brain) have been shown to be involved in many aspects of brain development, such as synapse formation and neuronal survival [53]. Cytokines, chemokines, major histocompatibility complex (MHC) molecules, and toll-like receptors (TLRs) have been shown to play a critical role in neural development [53][54][55]. Cytokines can target neurocircuits that are involved in regulating mood, motor activity, motivation, and anxiety [56]. As a result, the immune system could influence behaviours through its role in brain development.

The immune system is also more directly involved in regulating behaviour. Cytokines and chemokines can alter behaviour, for example, in sickness behaviour, where sick animals show reduced feed and water intake, lower activity levels, decreased exploration and social interactions, and increased sleep [57][58]. Cytokines could influence behaviour via their effects on the synthesis, re-uptake, and release of neurotransmitters, such as serotonin, dopamine, and glutamate [56][59][60]. As an example, cytokines can influence the functioning of the hypothalamic-pituitary-adrenal axis (HPA axis). They can activate corticotropin-releasing hormone (CRH) and thereby stimulate the release of adrenocorticotrophic hormone (ACTH) or can stimulate ACTH release, directly resulting in glucocorticoid release [56][61]. Cytokines can, in fact, influence behaviour via multiple routes.

In humans, there are similarities between sickness behaviour and behaviour expressed by individuals with certain neuropsychiatric disorders, such as depression [62]. Furthermore, many psychiatric disorders have been linked to immune dysregulation, including schizophrenia, anxiety and stress disorders, autism, and major depressive disorder [54].

Several studies have found relationships between the immune system and feather pecking. Most show genetic associations between feather damage (as an indicator of feather pecking) and the immune system. As mentioned previously, cytokines can influence the serotonergic and dopaminergic systems, and, in turn, these systems seem to be involved in the development of damaging behaviours such as feather pecking (for a review, see de Haas and van der Eijk [63]). In addition, through their effects on HPA axis functioning, cytokines could further influence how animals respond to or cope with stress. Feather pecking has been linked to coping styles and increased stress sensitivity [24][64]. Furthermore, feather pecking has been linked to motor activity [47], motivation, and fearfulness

[65], and cytokines target brain areas that are involved in the regulation of these behaviours. The serotonergic and dopaminergic systems also appear to be dysregulated in many of these brain areas when feather pecking occurs [63]. The immune system may, therefore, play a role in the development of feather pecking.

Genetic associations have been found between immune-related genes, such as interleukin (IL4, IL9), nuclear factor NF-kappa-B (NFKB), chemokine (CCL4) genes, and feather damage score, providing evidence of a relationship between feather pecking and immunity at the genetic level [66]. Genetic mutations in the *IL4* and *IL9* genes were also associated with levels of natural antibodies (NAb) IgM and IgG [67]. NAb are antibodies that can bind antigens without prior exposure to the antigen [68]. These associations were mostly associative genetic effects on feather damage scores and not direct genetic effects, suggesting that NAb levels may be related to the propensity to perform feather pecking. This is further supported by the finding that when cage mates had higher NAb IgG levels, the individual had more feather damage [67]. Genetic associations were further found between severe feather pecking and specific antibody responses [69], indicating that there are genes simultaneously involved in both feather pecking and specific antibody response. Interestingly, several genes involved in immune responses, for example, TNF ligand and mitogen-activated protein kinase, were either upregulated or downregulated in the hypothalamus of feather-pecking birds compared to neutrals and victim birds [14]. Furthermore, a chicken line performing more feather damage showed upregulation of genes related to immune system processes in the brain compared to a chicken line showing less feather damage [70][71]. These findings provide additional arguments supporting a relationship between the immune system and feather pecking (see also Brunberg et al. [72]).

Further evidence for a relationship between the immune system and feather pecking comes from lines that were divergently selected on feather pecking and that differ in several immune parameters. High-feather-pecking (HFP) birds showed a higher antibody response to infectious bursal disease virus vaccination, while low-feather-pecking (LFP) birds had a higher number of white blood cells and higher expression of MHC class I molecules on T (CD4, CD8) and B cells [73]. Recently, the FP selection lines were shown to differ in both innate and adaptive immune characteristics, with HFP birds having lower IgM NAb but higher IgG NAb levels, specific antibody levels, and nitric oxide production by monocytes compared to LFP birds [74]. These findings suggest that HFP and LFP birds differ in immune responsiveness and provide further support to a relationship between the immune system and feather pecking. Yet, these relationships could be the result of genes that are simultaneously involved in the immune system and in feather pecking, as also indicated by previous studies [66][75].

It remains to be elucidated whether these relationships between the immune system and feather pecking are causal. Preliminary findings show that the immune system may play a role in feather pecking. Birds that received an immune challenge at a young age showed more feather damage at an adult age [76], suggesting that activation of the specific immune response at a young age may stimulate birds to feather peck. Following this rationale, it can be considered that a health issue in a flock, such as infection implying immune system activation, may increase the risk of feather pecking in the future. More research is needed on this topic.

3.1.2. Other Impacts of Health on Damaging Behaviour

The health and integument status of laying hens are closely related. Plumage presence, persistence, and distribution on the body can be indicative of the nutritional status, health, and behaviour of the birds [77][78]. Close inspection of growing feathers can also provide information about physiological and systemic infectious issues while the feathers are formed.

Other dimensions of health, such as parasitic infestation, may affect the development of damaging behaviour in laying hens. Parasitic infestation, for example, with *Ascaridia galli*, can decrease health, performance production, and plumage coverage in layer flocks [79]. Parasitic infestation was significantly associated with plumage damage, while treated animals showed better plumage conditions. The authors claim that lower worm burdens were associated with improved plumage condition, possibly through reduced parasite-induced stress, without providing a precise explanation of the mechanism. These results are consistent with the previous hypothesis of this , where immune stimulation might trigger feather pecking.

Concerning external parasites, red mite (*Dermanyssus gallinae*) infestation can cause anaemia, while the presence of red mites can also lead to itching, disturbing the flock, and possibly acting as a trigger for injurious pecking [78]. The poultry red mite is the most common ectoparasite on laying hen farms worldwide, causing considerable economic losses and reduced hen health and welfare. Even in moderate numbers, they can cause considerable stress, agitation, and severe feather pecking in hens. As an example, it was shown in a study undertaken in 47 Belgian aviaries that the plumage condition of the flock is better on farms with no red mite infestations [77]. Temple et al. [80], in an experiment where infested layers were treated with fluralaner (Exzolt®), showed improvements in behavioural variables (less preening, head scratching, head checking, severe feather pecking, and aggressive behaviour), physiological biomarkers, and health parameters following the elimination of red mites on a commercial farm. These results indicate that infestations can reduce hen welfare. The severity of feather pecking associated with red mite infestation may increase in non-beak-trimmed flocks.

Other mites, such as the northern fowl mite (*Ornithonyssus sylviarum*), are also key pest species for caged laying hens. Jacobs et al. [81] showed that mite-infested hens had increased nocturnal activity, including preening, as well as fragmentation of behavioural activities together with decreased dozing, indicating disturbed resting behaviour and suggesting a reduction in the welfare of hens infested by these mites.

Plumage and integument damage can also result from clinical diseases, such as diarrhoea or nutrient deficiency. Hens perform more feather pecking when diets contain mineral, protein, or amino acid (methionine, arginine) levels below recommended levels [82]. Systemic bacterial infections such as *Erysipelas* can be associated with poor feather coverage and skin damage [78].

These findings indicate that health issues may stimulate damaging behaviour, but more research is needed to explain the mechanisms involved and to identify prevention strategies. The following chapter explores the consequences of damaging behaviour on laying hen health outcomes.

3.2. Impact of Damaging Behaviours on Health

When discussing the effects of damaging behaviour on the physical and mental health of laying hens, researchers are primarily referring to the “victim”, i.e., “the recipient”. First of all, the feather-pecking activity may degrade feather cover in recipients, which may interfere with the bird’s body heat regulation, and hens that have lost parts of their plumage are extremely susceptible to the cold [83]. Chickens are sensitive to touch; their skin contains numerous receptors for temperature, pressure, and pain [84]. In crowded systems, feather loss may give rise to skin damage caused by abrasion from the environment and flock mates [32]. Additionally, skin damage can trigger cannibalism [85], often resulting in the mortality of recipients. It has been shown that the victims of cannibalism have lower body weight than feather peckers [86][87]. Furthermore, feather damage may impact the structural cohesiveness of the feathers and lower the aerodynamic capacity of the wings [88][89], making them less efficient in helping to maintain balance [90], which can be problematic when using perches and navigating through a complex 3D aviary environment.

Even feather removal is a strong stressor for a bird; during feather pecking, the bird being pecked often shows crouching immobility with no outward sign of pain. Gentle [91] explained this immobility as learned helplessness, which develops when an animal experiences traumatic events that are aversive and that continue to happen independently of any attempts by the animal to reduce or eliminate them. Studies have shown that during initial feather removal, the birds become agitated, with wing flapping and/or vocalisation and increased heart rate, blood pressure, and EEG arousal as clear signs of pain. Over time, the continued removal of feathers does not produce an exaggerated escape response but an immobile “helplessness” state. During this period of immobility, the EEG of the victim shows activity similar to that seen in sleep or catatonic states, such as tonic immobility. Basically, this is an anti-predator strategy following capture to prevent further damage produced by struggling and to allow escape should the occasion arise. This strategy is, however, counterproductive in production systems where hens have no possibility to escape and are, in effect, making themselves available to be pecked [91]. This type of learned helplessness or anticipation of the negative event may lead to the appearance of negative emotions in hens related to fear and anxiety [84].

Tahamtani et al. [87] suggest that feather peckers and victims experienced similar levels of negative experiences during rearing, causing stress and developmental instability, leading to either pecker or victim status. For example, it is considered that fearfulness, proactive coping, or hyperactivity may predispose chickens to develop severe feather pecking. In the study by Kops et al. [92], the severe feather-pecking problem was discussed because of the lack of monoamines (serotonin and dopamine) in certain brain areas, which affects both emotional perception and behavioural output. Due to neurochemical deficits early in life, high-feather-pecking-line chickens are prone to increased general behavioural activity. In turn, this hyperactivity seems to be a clear risk factor for the development of feather pecking.

To conclude, damaging behaviour leads to denuded overall plumage, with an increased risk of poor thermoregulation, skin damage, and possibly wounds with an increased risk of infection (infection of the skin and tissues and peritonitis). These effects act negatively on hen health and welfare and possibly lead to increased mortality [24][36][93][94].

Consequently, there is a clear need to monitor laying hen health and welfare in order to ensure early detection of damaging behaviour and/or health issues and to use corrective measures. Most modern poultry husbandry systems house thousands of animals in a single barn, leading to challenges in the assessment of individual animals. The next chapter will summarise current knowledge on monitoring systems allowing early detection of damaging behaviour and health issues in order to prevent their spread.

References

1. Baker, J.; Greer, W. *Animal Health: A Layman's Guide to Disease Control*; IPP The Interstate Printers & Publishers Inc.: Danville, IL, USA, 1980.
2. Gunnarson, S. Definition of health and disease in text books of veterinarian medicine. *Animal production in Europe: The way forward in a changing world*. In Proceedings of the 13th International Society of Animal Hygiene, Saint-Malo, France, 11–13 October 2004; pp. 105–109.
3. OIE. *The One Health Concept: The OIE Approach*; OIE: Paris, France, 2013.
4. Estevez, I.; Andersen, I.-L.; Nævdal, E. Group size, density and social dynamics in farm animals. *Appl. Anim. Behav. Sci.* 2007, 103, 185–204.
5. Estevez, I.; Keeling, L.; Newberry, R. Decreasing aggression with increasing group size in young domestic fowl. *Appl. Anim. Behav. Sci.* 2003, 84, 213–218.
6. Estevez, I.; Newberry, R.; Keeling, L. Dynamics of aggression in the domestic fowl. *Appl. Anim. Behav. Sci.* 2002, 76, 307–325.
7. Bari, M.S.; Laurenson, Y.C.S.M.; Cohen-Barnhouse, A.M.; Walkden-Brown, S.W.; Campbell, D.L.M. Effects of outdoor ranging on external and internal health parameters for hens from different rearing enrichments. *PeerJ* 2020, 8, e8720.
8. Milisits, G.; Szász, S.; Donkó, T.; Budai, Z.; Almási, A.; Pőcze, O.; Ujvári, J.; Farkas, T.P.; Garamvölgyi, E.; Horn, P.; et al. Comparison of Changes in the Plumage and Body Condition, Egg Production, and Mortality of Different Non-Beak-Trimmed Pure Line Laying Hens during the Egg-Laying Period. *Animals* 2021, 11, 500.
9. Spindler, B.; Giersberg, M.; Andersson, R.; Kemper, N. Keeping laying hens with untrimmed beaks—A Review of the status quo in practice and science. *Züchtungskunde* 2016, 88, 475–493.
10. De Haas, E.N.; Newberry, R.C.; Edgar, J.; Riber, A.B.; Estevez, I.; Ferrante, V.; Hernandez, C.E.; Kjaer, J.B.; Ozkan, S.; Dimitrov, I.; et al. Prenatal and Early Postnatal Behavioural Programming in Laying Hens, with Possible Implications for the Development of Injurious Pecking. *Front. Vet. Sci.* 2021, 8, 693.

11. Coton, J.; Guinebretière, M.; Guesdon, V.; Chiron, G.; Mindus, C.; Laravoire, A.; Pauthier, G.; Balaine, L.; Descamps, M.; Bignon, L.; et al. Feather pecking in laying hens housed in free-range or furnished-cage systems on French farms. *Br. Poult. Sci.* 2019, 60, 617–627.
12. Lay, D.C.; Fulton, R.M.; Hester, P.Y.; Karcher, D.M.; Kjaer, J.B.; Mench, J.A.; Mullens, B.A.; Newberry, R.C.; Nicol, C.J.; O'Sullivan, N.P.; et al. Hen welfare in different housing systems1. *Poult. Sci.* 2011, 90, 278–294.
13. Jones, M.P.; Heidenreich, B. Behavior of Birds of Prey in Managed Care. *Vet. Clin. N. Am. Exot. Anim. Pract.* 2021, 24, 153–174.
14. Brunberg, E.; Jensen, P.; Isaksson, A.; Keeling, L. Feather pecking behavior in laying hens: Hypothalamic gene expression in birds performing and receiving pecks. *Poult. Sci.* 2011, 90, 1145–1152.
15. Huber-Eicher, B.; Sebö, F. The prevalence of feather pecking and development in commercial flocks of laying hens. *Appl. Anim. Behav. Sci.* 2001, 74, 223–231.
16. Sherwin, C.M.; Richards, G.J.; Nicol, C.J. Comparison of the welfare of layer hens in 4 housing systems in the UK. *Br. Poult. Sci.* 2010, 51, 488–499.
17. Campderrich, I.; Liste, G.; Estevez, I. The looks matter; aggression escalation from changes on phenotypic appearance in the domestic fowl. *PLoS ONE* 2017, 12, e0188931.
18. Rodenburg, T.B.; Komen, H.; Ellen, E.D.; Uitdehaag, K.A.; van Arendonk, J.A.M. Selection method and early-life history affect behavioural development, feather pecking and cannibalism in laying hens: A review. *Appl. Anim. Behav. Sci.* 2008, 110, 217–228.
19. Savory, C.J. Feather pecking and cannibalism. *Worlds Poult. Sci. J.* 1995, 51, 215–219.
20. Savory, J. Nutrition, Feeding and Drinking Behaviour, and Welfare. In *The Welfare of Domestic Fowl and Other Captive Birds*; Duncan, I.J.H., Hawkins, P., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 165–187.
21. Pötzsch, A.; Lewis, K.; Nicol, C.J.; Green, L.E. A cross-sectional study of the prevalence of vent pecking in laying hens in alternative systems and its associations with feather pecking, management and disease. *Appl. Anim. Behav. Sci.* 2001, 74, 259–272.
22. Krause, E.T.; Petow, S.; Kjaer, J.B. A note on the physiological and behavioural consequences of cannibalistic toe pecking in laying hens (*Gallus gallus domesticus*). *Arch. Für Geflugelkd.* 2011, 75, 140–143.
23. Leonard, M.L.; Horn, A.G.; Fairfull, R.W. Correlates and consequences of allopecking in White Leghorn chickens. *Appl. Anim. Behav. Sci.* 1995, 43, 17–26.
24. Rodenburg, T.B.; Van Krimpen, M.M.; De Jong, I.C.; De Haas, E.N.; Kops, M.S.; Riedstra, B.J.; Nordquist, R.E.; Wagenaar, J.P.; Bestman, M.; Nicol, C.J. The prevention and control of feather

pecking in laying hens: Identifying the underlying principles. *Worlds Poult. Sci. J.* 2013, 69, 361–374.

25. Gentle, M.J.; Hunter, L.N. Physiological and behavioural responses associated with feather removal in *Gallus gallus* var *domesticus*. *Res. Vet. Sci.* 1991, 50, 95–101.

26. Cloutier, S.; Newberry, R.C.; Honda, K.; Alldredge, J.R. Cannibalistic behaviour spread by social learning. *Anim. Behav.* 2002, 63, 1153–1162.

27. Tablante, N.L.; Vaillancourt, J.P.; Martin, S.W.; Shoukri, M.; Estevez, I. Spatial distribution of cannibalism mortalities in commercial laying hens. *Poult. Sci.* 2000, 79, 705–708.

28. Cloutier, S.; Newberry, R.C.; Forster, C.T.; Girsberger, K.M. Does pecking at inanimate stimuli predict cannibalistic behaviour in domestic fowl? *Appl. Anim. Behav. Sci.* 2000, 66, 119–133.

29. Kajlich, A.S.; Shivaprasad, H.L.; Trampel, D.W.; Hill, A.E.; Parsons, R.L.; Millman, S.T.; Mench, J.A. Incidence, Severity, and Welfare Implications of Lesions Observed Postmortem in Laying Hens from Commercial Noncage Farms in California and Iowa. *Avian Dis.* 2016, 60, 8–15.

30. Craig, J.V.; Lee, H.Y. Beak trimming and genetic stock effects on behavior and mortality from cannibalism in White Leghorn-type pullets. *Appl. Anim. Behav. Sci.* 1990, 25, 107–123.

31. Aerni, V.; El-Lethy, H.; Wechsler, B. Effect of foraging material and food form on feather pecking in laying hens. *Br. Poult. Sci.* 2000, 41, 16–21.

32. Blokhuis, H.J.; van der Haar, J.W. Effects of pecking incentives during rearing on feather pecking of laying hens. *Br. Poult. Sci.* 1992, 33, 17–24.

33. Dixon, L. Feather Pecking Behaviour and associated Welfare issues in Laying Hens. *Avian Biol. Res.* 2008, 1, 73–87.

34. Gyaryahu, G.; Robinzon, B.; Snapir, N. The effect of environmental enrichment on egg-layers: Five years of research. *Poult. Sci.* 1998, 77 (Suppl. 1), 1842.

35. De Haas, E.N.; Bolhuis, J.E.; de Jong, I.C.; Kemp, B.; Janczak, A.M.; Rodenburg, T.B. Predicting feather damage in laying hens during the laying period. Is it the past or is it the present? *Appl. Anim. Behav. Sci.* 2014, 160, 75–85.

36. Lambton, S.L.; Knowles, T.G.; Yorke, C.; Nicol, C.J. The risk factors affecting the development of gentle and severe feather pecking in loose housed laying hens. *Appl. Anim. Behav. Sci.* 2010, 123, 32–42.

37. Guinebretière, M.; Mika, A.; Michel, V.; Balaine, L.; Thomas, R.; Keïta, A.; Pol, F. Effects of Management Strategies on Non-Beak-Trimmed Laying Hens in Furnished Cages that Were Reared in a Non-Cage System. *Animals* 2020, 10, 399.

38. Liebers, C.J.; Schwarzer, A.; Erhard, M.; Schmidt, P.; Louton, H. The influence of environmental enrichment and stocking density on the plumage and health conditions of laying hen pullets. *Poult. Sci.* 2019, 98, 2474–2488.

39. Schreiter, R.; Damme, K.; Klunker, M.; Raoult, C.; von Borell, E.; Freick, M. Effects of edible environmental enrichments during the rearing and laying periods in a littered aviary—Part 1: Integument condition in pullets and laying hens. *Poult. Sci.* 2020, 99, 5184–5196.

40. Rodriguez-Aurrekoetxea, A.; Estevez, I. Use of space and its impact on the welfare of laying hens in a commercial free-range system. *Poult. Sci.* 2016, 95, 2503–2513.

41. Bestman, M.; Wagenaar, J.P. Health and Welfare in Dutch Organic Laying Hens. *Animals* 2014, 4, 374–390.

42. Jung, L.; Brenninkmeyer, C.; Niebuhr, K.; Bestman, M.; Tuyttens, F.A.M.; Gunnarsson, S.; Sørensen, J.T.; Ferrari, P.; Knierim, U. Husbandry Conditions and Welfare Outcomes in Organic Egg Production in Eight European Countries. *Animals* 2020, 10, 2102.

43. Falker-Gieske, C.; Iffland, H.; Preuß, S.; Bessei, W.; Drögemüller, C.; Bennewitz, J.; Tetens, J. Meta-analyses of genome wide association studies in lines of laying hens divergently selected for feather pecking using imputed sequence level genotypes. *BMC Genet.* 2020, 21, 114.

44. Rodenburg, T.B.; de Haas, E.N.; Nielsen, B.L.; Buitenhuis, A.J. Fearfulness and feather damage in laying hens divergently selected for high and low feather pecking. *Appl. Anim. Behav. Sci.* 2010, 128, 91–96.

45. Riedstra, B.; Groothuis, T.G.G. Early feather pecking as a form of social exploration: The effect of group stability on feather pecking and tonic immobility in domestic chicks. *Appl. Anim. Behav. Sci.* 2002, 77, 127–138.

46. Kjaer, J.; Wuerbal, H.; Schrader, L. Perseveration in a guessing task by laying hens selected for high or low levels of feather pecking does not support classification of feather pecking as a stereotypy. *Appl. Anim. Behav. Sci.* 2015, 168, 56–60.

47. Kjaer, J.B. Feather pecking in domestic fowl is genetically related to locomotor activity levels: Implications for a hyperactivity disorder model of feather pecking. *Behav. Genet.* 2009, 39, 564–570.

48. Krause, E.T.; Phi-van, L.; Dudde, A.; Schrader, L.; Kjaer, J.B. Behavioural consequences of divergent selection on general locomotor activity in chickens. *Behav. Processes* 2019, 169, 103980.

49. Borda-Molina, D.; Iffland, H.; Schmid, M.; Müller, R.; Schad, S.; Seifert, J.; Tetens, J.; Bessei, W.; Bennewitz, J.; Camarinha-Silva, A. Gut Microbial Composition and Predicted Functions Are Not Associated with Feather Pecking and Antagonistic Behavior in Laying Hens. *Life* 2021, 11, 235.

50. Meyer, B.; Zentek, J.; Harlander-Matauscheck, A. Differences in intestinal microbial metabolites in laying hens with high and low levels of repetitive feather-pecking behavior. *Physiol. Behav.* 2013, 110–111, 96–101.

51. van der Eijk, J.A.J.; Rodenburg, T.B.; de Vries, H.; Kjaer, J.B.; Smidt, H.; Naguib, M.; Kemp, B.; Lammers, A. Early-life microbiota transplantation affects behavioural responses, serotonin and immune characteristics in chicken lines divergently selected on feather pecking. *Sci. Rep.* 2020, 10, 2750.

52. Birkl, P.; Bharwani, A.; Kjaer, J.B.; Kunze, W.; McBride, P.; Forsythe, P.; Harlander-Matauscheck, A. Differences in cecal microbiome of selected high and low feather-pecking laying hens. *Poult. Sci.* 2018, 97, 3009–3014.

53. Deverman, B.E.; Patterson, P.H. Cytokines and CNS development. *Neuron* 2009, 64, 61–78.

54. Bilbo, S.D.; Schwarz, J.M. The immune system and developmental programming of brain and behavior. *Front. Neuroendocrinol.* 2012, 33, 267–286.

55. Borsini, A.; Zunszain, P.A.; Thuret, S.; Pariante, C.M. The role of inflammatory cytokines as key modulators of neurogenesis. *Trends Neurosci.* 2015, 38, 145–157.

56. Capuron, L.; Miller, A.H. Immune system to brain signaling: Neuropsychopharmacological implications. *Pharmacol. Ther.* 2011, 130, 226–238.

57. Dantzer, R.; Bluthé, R.M.; Gheusi, G.; Cremona, S.; Layé, S.; Parnet, P.; Kelley, K.W. Molecular basis of sickness behavior. *Ann. N. Y. Acad. Sci.* 1998, 856, 132–138.

58. Dantzer, R.; Bluthé, R.M.; Layé, S.; Bret-Dibat, J.L.; Parnet, P.; Kelley, K.W. Cytokines and sickness behavior. *Ann. N. Y. Acad. Sci.* 1998, 840, 586–590.

59. Miller, A.H. Norman Cousins Lecture. Mechanisms of cytokine-induced behavioral changes: Psychoneuroimmunology at the translational interface. *Brain Behav. Immun.* 2009, 23, 149–158.

60. Miller, A.H.; Haroon, E.; Raison, C.L.; Felger, J.C. Cytokine targets in the brain: Impact on neurotransmitters and neurocircuits. *Depress. Anxiety* 2013, 30, 297–306.

61. Silverman, J.; Garnett, N.L.; Giszter, S.F.; Heckman, C.J.; Kulpa-Eddy, J.A.; Lemay, M.A.; Perry, C.K.; Pinter, M. Decerebrate mammalian preparations: Unalleviated or fully alleviated pain? A review and opinion. *Contemp. Top. Lab. Anim. Sci.* 2005, 44, 34–36.

62. Dantzer, R.; O'Connor, J.C.; Freund, G.G.; Johnson, R.W.; Kelley, K.W. From inflammation to sickness and depression: When the immune system subjugates the brain. *Nat. Rev. Neurosci.* 2008, 9, 46–56.

63. de Haas, E.N.; van der Eijk, J.A.J. Where in the serotonergic system does it go wrong? Unravelling the route by which the serotonergic system affects feather pecking in chickens. *Neurosci. Biobehav. Rev.* 2018, 95, 170–188.

64. Koolhaas, J.M.; Korte, S.M.; De Boer, S.F.; Van Der Vegt, B.J.; Van Reenen, C.G.; Hopster, H.; De Jong, I.C.; Ruis, M.A.; Blokhuis, H.J. Coping styles in animals: Current status in behavior and stress-physiology. *Neurosci. Biobehav. Rev.* 1999, 23, 925–935.

65. Rodenburg, T.B.; van Hierden, Y.M.; Buitenhuis, A.J.; Riedstra, B.; Koene, P.; Korte, S.M.; van der Poel, J.J.; Groothuis, T.G.G.; Blokhuis, H.J. Feather pecking in laying hens: New insights and directions for research? *Appl. Anim. Behav. Sci.* 2004, 86, 291–298.

66. Biscarini, F.; Bovenhuis, H.; van der Poel, J.; Rodenburg, T.B.; Jungerius, A.P.; van Arendonk, J.A. Across-line SNP association study for direct and associative effects on feather damage in laying hens. *Behav. Genet.* 2010, 40, 715–727.

67. Sun, Y.; Biscarini, F.; Bovenhuis, H.; Parmentier, H.K.; van der Poel, J.J. Genetic parameters and across-line SNP associations differ for natural antibody isotypes IgM and IgG in laying hens. *Anim. Genet.* 2013, 44, 413–424.

68. Baumgarth, N.; Tung, J.W.; Herzenberg, L.A. Inherent specificities in natural antibodies: A key to immune defense against pathogen invasion. *Springer Semin. Immunopathol.* 2005, 26, 347–362.

69. Buitenhuis, A.J.; Rodenburg, T.B.; Wissink, P.H.; Visscher, J.; Koene, P.; Bovenhuis, H.; Ducro, B.J.; van der Poel, J.J. Genetic and phenotypic correlations between feather pecking behavior, stress response, immune response, and egg quality traits in laying hens. *Poult. Sci.* 2004, 83, 1077–1082.

70. Habig, C.; Geffers, R.; Distl, O. Differential Gene Expression from Genome-Wide Microarray Analyses Distinguishes Lohmann Selected Leghorn and Lohmann Brown Layers. *PLoS ONE* 2012, 7, e46787.

71. Habig, C.; Geffers, R.; Distl, O. A Replication Study for Genome-Wide Gene Expression Levels in Two Layer Lines Elucidates Differentially Expressed Genes of Pathways Involved in Bone Remodeling and Immune Responsiveness. *PLoS ONE* 2014, 9, e98350.

72. Brunberg, E.I.; Rodenburg, T.B.; Rydhmer, L.; Kjaer, J.B.; Jensen, P.; Keeling, L.J. Omnivores Going Astray: A Review and New Synthesis of Abnormal Behavior in Pigs and Laying Hens. *Front. Vet. Sci.* 2016, 3, 57.

73. Buitenhuis, A.J.; Kjaer, J.B.; Labouriau, R.; Juul-Madsen, H.R. Altered circulating levels of serotonin and immunological changes in laying hens divergently selected for feather pecking behavior. *Poult. Sci.* 2006, 85, 1722–1728.

74. van der Eijk, J.A.J.; Verwoolde, M.B.; de Vries Reilingh, G.; Jansen, C.A.; Rodenburg, T.B.; Lammers, A. Chicken lines divergently selected on feather pecking differ in immune characteristics. *Physiol. Behav.* 2019, 212, 112680.

75. Hughes, A.L.; Buitenhuis, A.J. Reduced variance of gene expression at numerous loci in a population of chickens selected for high feather pecking. *Poult. Sci.* 2010, 89, 1858–1869.

76. Parmentier, H.K.; Rodenburg, T.B.; De Vries Reilingh, G.; Beerda, B.; Kemp, B. Does enhancement of specific immune responses predispose laying hens for feather pecking? *Poult. Sci.* 2009, 88, 536–542.

77. Heerkens, J.L.T.; Delezie, E.; Kempen, I.; Zoons, J.; Ampe, B.; Rodenburg, T.B.; Tuyttens, F.A.M. Specific characteristics of the aviary housing system affect plumage condition, mortality and production in laying hens. *Poult. Sci.* 2015, 94, 2008–2017.

78. Nicol, C. Feather pecking. In *Poultry Feathers and Skin*; Olukosi, O.A., Olori, A.H.V., Lambton, S., Eds.; CABI International: Wallingford, UK, 2019; pp. 31–46.

79. Tarbiat, B.; Jansson, D.S.; Wall, H.; Tydén, E.; Höglund, J. Effect of a targeted treatment strategy against *Ascaridia galli* on egg production, egg quality and bird health in a laying hen farm. *Vet. Parasitol.* 2020, 286, 109238.

80. Temple, D.; Manteca, X.; Escribano, D.; Salas, M.; Mainau, E.; Zschiesche, E.; Petersen, I.; Dolz, R.; Thomas, E. Assessment of laying-bird welfare following acaricidal treatment of a commercial flock naturally infested with the poultry red mite (*Dermanyssus gallinae*). *PLoS ONE* 2020, 15, e0241608.

81. Jacobs, L.; Vezzoli, G.; Beerda, B.; Mench, J.A. Northern fowl mite infestation affects the nocturnal behavior of laying hens. *Appl. Anim. Behav. Sci.* 2019, 216, 33–37.

82. Van Krimpen, M.M.; Kwakkel, R.P.; Reuvekamp, B.F.J.; Van der Peet-Schwering, C.M.C.; Den Hartog, L.A.; Verstegen, M.W.A. Impact of feeding management on feather pecking in laying hens. *Worlds Poult. Sci. J.* 2005, 61, 665–687.

83. Freeman, R.E. *Strategic Management: A Stakeholder Approach*; Cambridge University Press: Boston, MA, USA, 1984.

84. Marino, L. Thinking chickens: A review of cognition, emotion, and behavior in the domestic chicken. *Anim. Cogn.* 2017, 20, 127–147.

85. Rodenburg, T.B.; Koene, P. The impact of group size on damaging behaviours, aggression, fear and stress in farm animals. *Appl. Anim. Behav. Sci.* 2007, 103, 205–214.

86. Cloutier, S.; Newberry, R. Differences in skeletal and ornamental traits between laying hen cannibals, victims and bystanders. *Appl. Anim. Behav. Sci.* 2002, 77, 115–126.

87. Tahamtani, F.M.; Forkman, B.; Hinrichsen, L.K.; Riber, A.B. Both feather peckers and victims are more asymmetrical than control hens. *Appl. Anim. Behav. Sci.* 2017, 195, 67–71.

88. Heers, A.M.; Tobalske, B.W.; Dial, K.P. Ontogeny of lift and drag production in ground birds. *J. Exp. Biol.* 2011, 214, 717–725.

89. Müller, W.; Patone, G. Air transmissivity of feathers. *J. Exp. Biol.* 1998, 201, 2591–2599.

90. LeBlanc, S.; Tobalske, B.; Quinton, M.; Springthorpe, D.; Szkotnicki, B.; Wuerbel, H.; Harlander-Matauscheck, A. Physical Health Problems and Environmental Challenges Influence Balancing Behaviour in Laying Hens. *PLoS ONE* 2016, 11, e0153477.
91. Gentle, M.J. Pain issues in poultry. *Appl. Anim. Behav. Sci.* 2011, 135, 252–258.
92. Kops, M.S.; Kjaer, J.B.; Güntürkün, O.; Westphal, K.G.C.; Korte-Bouws, G.A.H.; Olivier, B.; Korte, S.M.; Bolhuis, J.E. Brain monoamine levels and behaviour of young and adult chickens genetically selected on feather pecking. *Behav. Brain Res.* 2017, 327, 11–20.
93. Nicol, C.J.; Bestman, M.; Gilani, A.M.; De Haas, E.N.; De Jong, I.C.; Lambton, S.; Wagenaar, J.P.; Weeks, C.A.; Rodenburg, T.B. The prevention and control of feather pecking: Application to commercial systems. *Worlds Poult. Sci. J.* 2013, 69, 775–788.
94. Green, L.E.; Lewis, K.; Kimpton, A.; Nicol, C.J. Cross-sectional study of the prevalence of feather pecking in laying hens in alternative systems and its associations with management and disease. *Vet. Rec.* 2000, 147, 233–238.

Retrieved from <https://encyclopedia.pub/entry/history/show/53868>