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Unmanned aerial vehicles (UAVs) visual object tracking under low-light conditions serves as a crucial component

for applications, such as night surveillance, indoor searches, night combat, and all-weather tracking. However, the

majority of the existing tracking algorithms are designed for optimal lighting conditions. In low-light environments,

images captured by UAV typically exhibit reduced contrast, brightness, and a signal-to-noise ratio, which hampers

the extraction of target features. Moreover, the target’s appearance in low-light UAV video sequences often

changes rapidly, rendering traditional fixed template tracking mechanisms inadequate, and resulting in poor tracker

accuracy and robustness. 

unmanned aerial vehicle  low-light tracking

1. Introduction

Visual object tracking is a fundamental task in computer vision that finds extensive applications in the unmanned

aerial vehicle (UAV) domain. Recent years have witnessed the emergence of new trackers that exhibit exceptional

performance in UAV tracking , which is largely attributed to the fine manual annotation of large-scale datasets

. However, the evaluation standards and tracking algorithms currently employed are primarily designed for

favorable lighting conditions. In real-world scenarios, low-light conditions such as nighttime, rainy weather, and

small spaces are often encountered, resulting in images with low contrast, low brightness, and low signal-to-noise

ratio compared to normal lighting. These discrepancies give rise to inconsistent feature distributions between the

two types of images, thereby rendering it challenging to extend trackers designed for favorable lighting conditions

to low-light scenarios , making it more challenging for UAV tracking.

Low-light UAV video sequences exhibit poor robustness and tracking drift when conventional object-tracking

algorithms are employed, as illustrated in Figure 1. The issue of object tracking under low-light conditions can be

divided into two sub-problems: enhancing low-light image features and tackling the challenge of target appearance

changes in low-light video sequences. First, the low contrast, low brightness, and low signal-to-noise ratio of low-

light images make feature extraction more arduous compared to normal images. Insufficient feature information

hampers subsequent object-tracking tasks and constrains the performance of object-tracking algorithms. Another

obstacle hindering the effectiveness of object-tracking algorithms arises from the characteristics of low-light video

sequences. During tracking, the target’s appearance often changes, and when it becomes occluded or deformed,

its features no longer correspond to the original template features, resulting in tracking drift. Such challenges are

commonplace in vision object-tracking tasks and are more pronounced under low-light conditions due to the

[1][2][3]

[4][5][6][7]

[8][9]



Low-Light Object Tracking in UAV Videos | Encyclopedia.pub

https://encyclopedia.pub/entry/48233 2/9

unstable lighting conditions, which serve as a crucial limiting factor for the performance of object-tracking

algorithms.

Figure 1. Trackers performance under low-light conditions.

2. Low-Light Image Enhancement

The objective of low-light image enhancement is to improve the quality of images by making the details that are

concealed in darkness visible. In recent years, this area has gained significant attention and undergone continuous

development and improvement in various computer vision domains. Two main types of algorithms are used for low-

light image enhancement, namely model-based methods and deep learning-based methods.

Model-based methods were developed earlier and are based on the Retinex theory . According to this theory,

low-light images can be separated into illuminance and reflectance components. The reflectance component

contains the essential attributes of the image, including edge details and color information, while the illuminance

component captures the general outline and brightness distribution of the objects in the image. Fu et al.  were

the first to use the L2 norm to constrain illumination and proposed an image enhancement method that

simultaneously estimates illuminance and reflectance components in the linear domain. This method demonstrated

that the linear domain formula is more suitable than the logarithmic domain formula. Guo et al.  used relative

total variation  as a constraint on illumination and developed a structure-aware smoothing model to obtain better

estimates of illuminance components. However, this model has the disadvantage of overexposure. Li et al. 

added a noise term to address low-light image enhancement under strong noise conditions. They introduced new
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regularization terms to jointly estimate a piecewise smooth illumination and a structure-displaying reflectance in the

optimization problem of illumination and reflectance. They also modeled noise removal and low-light enhancement

as a unified optimization goal. Additionally, Ref.  proposed a semi-decoupled decomposition model to

simultaneously enhance brightness and suppress noise. Although some models use camera response

characteristics (e.g., LEACRM ), their effects are often not ideal and require manual adjustment of numerous

parameters when dealing with real scenes.

In recent years, deep learning-based methods have rapidly emerged with the advancement of computer

technology. Li et al.  proposed a control-based method for optimizing UAV trajectories, which incorporates

energy conversion efficiency by directly deriving the model from the voltage and current flow of the UAV’s electric

motor. EvoXBench  introduced an end-to-end process to address the lack of a general problem statement for

NAS tasks from an optimization perspective. Zhang et al.  presented a low-complexity strategy for super-

resolution (SR) based on adaptive low-rank approximation (LRA), aiming to overcome the limitations of processing

large-scale datasets. Jin et al.  developed a deep transfer learning method that leverages facial recognition

techniques to achieve a computer-aided facial diagnosis, validated in both single disease and multiple diseases

with healthy controls. Zheng et al.  proposed a two-stage data augmentation method for automatic modulation

classification in deep learning, utilizing spectral interference in the frequency domain to enhance radio signals and

aid in modulation classification. This marks the first instance where frequency domain information has been

considered to enhance radio signals for modulation classification purposes. Meanwhile, deep learning-based low-

light enhancement algorithms have also made significant progress. Chen et al.  created a new dataset called

LOL dataset by collecting low/normal light image pairs with adjusted exposure time. This dataset is the first to

contain image pairs obtained from real scenes for low-light enhancement research, making a significant

contribution to learning-based low-light image enhancement algorithm research. Many algorithms have been

trained based on this dataset. The retinal network, designed in , generated unnatural enhancement results. KinD

 improved some of the issues in the retinal network by adjusting the network architecture and introducing some

training losses. DeepUPE  proposed a low-light image enhancement network that learned an image-to-

illumination component mapping. Yang et al.  developed a fidelity-based two-stage network that first restores

signals and then further enhances the results to improve overall visual quality, trained using a semi-supervised

strategy. EnGAN  used a GAN-based unsupervised training method to enhance low-light images using unpaired

low/normal light data. The network was trained using carefully designed discriminators and loss functions while

carefully selecting training data. SSIENet  proposed a maximum entropy-based Retinex model that could

estimate illuminance and reflectance components simultaneously while being trained only with low-light images.

ZeroDCE  heuristically constructed quadratic curves with learned parameters to estimate parameter mapping

from low-light input and used curve projection models for iterative light enhancement of low-light images. However,

these models focus on adjusting the brightness of images and do not consider the noise that inevitably occurs in

real-world nighttime imaging. Liu et al.  introduced prior constraints based on Retinex theory to establish a low-

light image enhancement model and constructed an overall network architecture by unfolding its optimization

solution process. Recently, Ma et al.  added self-correcting modules during training to reduce the model

parameter size and improve inference speed.
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However, these algorithms have limited stability, and it is difficult to achieve sustained superior performance,

particularly in unknown real scenes where unclear details and inappropriate exposure are common and without

good solutions for noise in images.

3. Object Tracking

In recent years, object tracking algorithms can be classified into methods based on discriminative correlation

filtering  and methods based on Siamese networks. Achieving end-to-end training on trackers based on

discriminative correlation filtering is challenging due to their complex online learning process. Moreover, limited by

low-level manual features or inappropriate pre-trained classifiers, trackers based on discriminative correlation

filtering become ineffective under complex conditions.

With the continuous improvement of computer performance and the establishment of large-scale datasets, tracking

algorithms based on Siamese networks have become mainstream due to their superior performance. The Siamese

network series of algorithms started with SINT  and SiamFC , which treat target tracking as a similarity

learning problem and train Siamese networks using large amounts of image data. SiamFC introduced a correlation

layer for feature fusion which significantly improved accuracy. Based on the success of SiamFC, subsequent

improvements were made. CFNet  added a correlation filter to the template branch to make the network

shallower and more efficient. DSiam  proposed a dynamic Siamese network that could be trained on labeled

video sequences as a whole, fully utilizing the rich spatiotemporal information of moving objects and achieving

improved accuracy with an acceptable speed loss. RASNet  used three attention mechanisms to weight the

space and channels of SiamFC features, enhancing the network’s discriminative ability by decomposing the

coupling of feature extraction and discriminative analysis. SASiam  established a Siamese network containing

semantic and appearance branches. During training, the two branches were separated to maintain specificity.

During testing, the two branches were combined to improve accuracy. However, these methods require multi-scale

testing to cope with scale changes and cannot handle proportion changes caused by changes in target

appearance. To obtain more accurate target bounding boxes, B. Li et al.  introduced a region proposal network

(RPN)  into the Siamese network framework, achieving simultaneous improvement in accuracy and speed.

SiamRPN++  further adopted a deeper backbone and feature aggregation architecture to exploit the potential of

deep networks on Siamese networks and improve tracking accuracy. SiamMask  introduced a mask branch to

simultaneously achieve target tracking and image segmentation. Xu et al.  proposed a set of criteria for

estimating the target state in tracker design and designed a new Siamese network, SiamFC++, based on SiamFC.

DaSiamRPN  introduced existing detection datasets to enrich positive sample data and difficult negative sample

data to improve the generalization and discrimination ability of trackers. It also introduced a local-to-global strategy

to achieve good accuracy in long-term tracking. Anchor-free methods use per-pixel regression to predict four

offsets on each pixel, reducing the hyperparameters caused by the introduction of RPNs. SiamBAN  proposed a

tracking framework, containing multiple adaptive heads, that does not require multi-scale search or predefined

candidate boxes, that directly classifies objects in a unified network, and that regresses bounding boxes. SiamCAR

 added a centrality branch to help determine the position of the target center point and further improve tracking
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accuracy. Recently, Transformer  was integrated into the Siamese framework to simulate global information and

improve tracking performance.

Regarding target tracking algorithms under low-light conditions, a DCF framework integrated with a low-light

enhancer was proposed in . However, it is limited to hand-crafted features and lacks transferability. Ye et al. 

developed a new unsupervised domain adaptation framework that uses a day-night feature discriminator to

adversarially train a daytime tracking model for nighttime tracking. However, there is currently insufficient targeted

research on this issue.
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