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Spectroscopy technology is a popular method for quantitative and qualitative analysis in fields such as agricultural

products and foods by combining with various chemometric methods. In fact, this is the application basis for

spectroscopy and spectral imaging techniques in other fields such as genetics and transgenic monitoring. There

has been considerable research using spectroscopy (especially near infrared (NIR) spectroscopy) for the effective

identification of agricultural products and foods. The principles and characteristics of NIR spectroscopy and its

applications in the detection of transgenic agricultural products and foods are described.

chemometric analysis  transgenic agricultural products and foods  near-infrared spectroscopy

1. The Principles and Characteristics of NIRS

Near infrared spectroscopy (NIRS), with a wavelength range between 780 and 2500 nm, can be divided into short-

wave NIR (with a range of 780–1100 nm) and long-wave NIR (with a range of 1100–2500 nm) , and is sometimes

used together with a range of 350–780 nm visible range light to form a Vis-NIR spectrum for relevant detection.

The state, composition, and structure of the molecule can be obtained by analyzing the primary overtones and

oscillations between the hydrogen-containing groups, such as C-H, N-H, O-H, etc., by NIRS . The common near-

infrared spectrometers consist of a light source, a beam splitter system (wavelength selector), a sample detector,

and an optical detector, and some are equipped with a data processing/analysis system for simplicity. The use of

these parts should be chosen according to their use. NIR spectroscopy has transmission, diffuse reflection,

transmission and reflection detection methods, and the choice of different detection methods is also demand-

dependent.

After data acquisition with the spectrometer, the general steps for spectral analysis include: (1) spectral data

preprocessing ; (2) feature wavelength selection ; (3) model establishment and evaluation . The main

analysis steps are shown in Figure 1.
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Figure 1. The general analyzing steps of NIRS data.

1.1. The Spectral Preprocessing Methods

The sample spectrum data collected by the spectrometer contains only not the chemical information of the sample

itself, but also other irrelevant information and noise, such as electrical noise, sample background, stray light, etc.

. Therefore, in the application of chemometric methods for spectral analysis, it is necessary to preprocess the

original spectral data to eliminate the irrelevant information and noise in the data, which is a necessary step in the

analysis.

Smoothing, derivative, multiple scattering correction (MSC), baseline correction, standard normal transformation

(SNV), orthogonal signal correction (OSC), and combinations of these methods are common spectral

preprocessing methods .

Smoothing preprocessing is one of the most widely used methods for removing spectral noise. Moving average

smoothing (MS) and Savitzk-Golay (SG) smoothing are commonly used smoothing methods. Derivative

preprocessing is to eliminate the baseline offset and drift, enhance the spectral band features, and overcome the

spectral band overlap . The direct difference method and SG derivative method are the commonly used

derivative preprocessing methods . Baseline correction pretreatment successfully eliminates baseline drift and

tilt caused by the instrument’s backdrop and the uneven surface of the sample by artificially pulling the baseline of

the absorbance spectrum back to 0 baseline . Multiple scattering correction (MSC) preprocessing is mainly used

to eliminate the effect of scattering on the spectrum and effectively enhance the spectral information related to the

content of sample components; the spectral errors due to factors such as optical path changes or sample dilution

can be eliminated . Standard normal variate transformation (SNV) is the processing of spectral data with a
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mean value of 0 and a standard deviation of 1 . Orthogonal signal correction (OSC) is a spectral preprocessing

algorithm based on the involvement of physical and chemical values of samples . In order to improve the

robustness and prediction ability of the model, the information unrelated to the physical and chemical values of

spectral data is removed by orthogonal projection and then analyzed by corresponding modeling methods.

In NIRS preprocessing analysis, MSC and SNV are two well-known methods for reducing spectral distortion due to

dispersion, and they have been proven to be effective in correcting the problems of inhomogeneous particle

distribution and refractive index variation in food applications . Although these preprocessing methods were

aimed to reduce unmodeled variability in the spectra data in order to improve the features sought in the spectra,

which are usually linearly related to the phenomenon of interest. However, if incorrect preprocessing techniques

are used, the essential information may at risk of information removal .

1.2. The Feature Wavelength Selection Methods

When all wavelength variables are used for modeling, it may be computationally intensive and time consuming,

and sometimes the absorption of NIR spectra is not obvious and the overlap is serious, which contains redundant

information, so it is normal to eliminate the irrelevant information and filter out the independent variables with high

correlation when modeling. When the useless variable is introduced into the model, it will affect model stability and

prediction precision. Therefore, it is necessary to extract the feature wavelength variables from the full spectrum

before modeling. At present, the commonly used methods for selecting the characteristic wavelengths 

include principal component analysis (PCA), competitive adaptive reweighting (CARS), the genetic algorithm (GA),

the successive projection algorithm (SPA), and uninformative variable elimination (UVE), etc.

PCA is a popular linear dimensionality reduction approach that is used to map high-dimensional data into a low-

dimensional space using some type of linear projection. It is expected that the variance of the projected dimension

is the largest, so that fewer data dimensions can be used and more original data points can be retained, which can

reduce dimension and eliminate redundant information . CARS is a variable selection method proposed to

simulate the “survival of the fittest” principle in Darwin’s evolution theory . The idea of GA is to optimize the

PLSR model based on the RMSECV of selected variables by genetic iteration . SPA is a method to improve

modeling speed and prediction accuracy by reducing the covariance between variables and obtaining the

wavelength with the least redundant information . UVE is a wavelength selection algorithm based on the PLSR

coefficients, which is used to eliminate the full-wavelength variables, the stability of which is less than the noise,

thereby improving the predictive power of the model . Sometimes, one feature wavelength selected algorithm is

used, and the modeling effect is not very effective, and is therefore often used in combination with other feature

wavelength selection methods .

1.3. Model Establishment and Evaluation

For NIR spectroscopy, a calibration model of the spectra is finally established in a linear and nonlinear way for

qualitative or quantitative analysis after the pretreatment or feature wavelength selection.
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With the rapid development of statistics, it is an inevitable trend to use mathematical analysis methods  for more

scientific classification and quantitative detection, which can be linear, non-linear, or supervised or unsupervised

modes. The common qualitative and quantitative methods are k-nearest (KNN) , linear discriminant analysis

(LDA) , partial least squares discriminant analysis (PLS-DA) , extreme learning machine (ELM) ,

Support vector machine (SVM) , back propagation neural network (BPNN) , partial least squares

regression (PLSR) , and radial basis function neural network (RBFNN) , etc.

After the model is established, the stability and accuracy of the model is evaluated, and the high-quality correction

model is selected. Indicators often employed include accuracy, correlation coefficient, standard deviation of

calibration and prediction set samples, etc.

NIRS and chemometrics methods are a pair of twin technologies that have been developing in tandem with each

other. In recent years, deep learning algorithms, represented by convolutional neural networks (CNN), have been

used for quantitative and qualitative modeling of NIR spectra . Compared with traditional machine learning

methods, the convolutional neural network can extract the features embedded in the spectral data step by step

through multiple convolution and pooling layers, and to a certain extent, the preprocessing of spectra and the

selection of variables before modeling can be reduced.

Among the most popular deep learning-based models, the DeepSpectra model has outperformed all the other

models . The combination of deep learning and spectral detection methods is a promising approach for the

quality assessment of food and agricultural products, as well as for genetic modification detection .

2. The Applications of NIRS for the Detection of Transgenic
Agricultural Products and Foods

In the last few decades, NIRS has demonstrated its power in the detection of agricultural products and foods, and

there are now a series of applications in meat detection , agricultural materials and foods safety control 

, and fruits and vegetables detection . Taking maize testing as an example, NIRS has been used in a

range of applications in the identification of variety purity identification , vigor , internal components such

as moisture and protein , fungal toxins , and frost damage . Today, there is also equipment that

can be used for online monitoring of agricultural products and foods using handheld/portable NIR spectroscopy for

industrial applications .

With the in-depth study of spectroscopy technology, researchers have started to introduce NIRS technology into

the identification of transgenic food and agricultural products, as shown in Table 1. 

Table 1. Studies on the detection of transgenic agricultural products and foods using near-infrared spectroscopy.
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Author Object Preprocessing
Methods Models Results Reference

Soo-In
Sohn et

al.

Transgenic
Brassica
napus L.

SG, smoothing
filter, SNV,

Normalization

LDA,
CNN,
GBT,

SVM, RF

The highest accuracy of the
combination of SG and SVM was

100%.

Soo-In
Sohn et

al.

Transgenic
Brassica
napus L.

Normalization,
SNV, SG

LDA,
Deep

Learning,
SVM,

GLM, DT,
NB, FLM,

RF

99.4% classification accuracy for
SNV and SVM, 99.1%

classification accuracy for SG
and deep learning

Lijuan Xie
et al.

Transgenic
Tomatoes

MSC, 1st and
2nd derivatives

DA, PLS-
DA

PLS-DA with the classification
accuracy of 100%

Lijuan Xie
et al.

Transgenic
Tomatoes

MSC, SG 1st,
2nd

SIMCA,
DPLS

DPLS with the classification
accuracy of 100%

Lijuan Xie
et al.

Chlorophyll
Content of
Transgenic

Tomato
Leaves

MSC, 1st and
2nd derivatives

PLS-DA
PLS-DA with the classification

accuracy of 100%

Lijuan Xie
et al.

Transgenic
tomato leaf

MSC, 1st and
2nd derivatives

DA, PLS
With the classification accuracy

of 89.7%

Lijuan Xie
et al.

ethylene
content in
tomatoes

SNV, MSC, 1st
and 2nd

derivatives

PLSR,
SMLR

PLSR and SMLR can determine
the ethylene content in tomato.

Wenchao
Zhu et al.

Leaves of
transgenic

rice, SPAD in
leaf

MSC, OSC LS-SVM

SPA-LS-SVM method can quickly
identify transgenic rice leaves

and accurately predict the SPAD
value.

Takefumi
Hattori et

al.

Transgenic
rice straw

1st and 2nd
derivatives, SNV

PLSR

SNV-PLSR obtained a strong
correlation between laboratory
wet chemistry values and NIR

predicted values.

Long
Zhang et

al.

Transgenic
Rice

SNV, PCA PLS-DA
The correct classification rate of
the validation test was 100.0%.

Yong Hao
et al.

Transgenic
Rice

NWS, SNV,
MSC, SG 1st-

Derivative

PLS-DA,
SVM

Model achieved good analytical
results with 100% accuracy rate.
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Author Object Preprocessing
Methods Models Results Reference

Mayara
Macedo

da Mata et
al.

Transgenic
cotton

SNV, 1st
derivative

PLS-DA
NIR and Raman prediction sets

had classification errors of 2.23%
and 0.0%, respectively

Jin Hwan
Lee et al.

Transgenic
soybean

1st, 2nd
derivatives

PLS-DA
2nd derivatives and PLSDA had

results with 97% accuracy

Jiang Wu
et al.

Transgenic
soybean

SNV BPNN
BPNN had 100% identification

rate

Xuping
Feng et al.

Transgenic
maize

SG smoothing

KNN,
SIMCA,
NBC,
ELM,

RBFNN

The classification rates of full-
spectrum and the feature

wavelength were 100% and
90.83% in ELM model.

Cheng
Peng et

al.

Transgenic
maize

SG smoothing PLS, SVM

The accuracy of the SVM model
based on full-band spectra of
transgenic maize powder was

90.625%.

Haosong
Guo et al.

Transgenic
sugarcane

SG, MW LDA

The corresponding validation
recognition rates of transgenic
and non-transgenic samples
achieved 99.1% and 98.0%,

respectively.

Guisong
Liu et al.

Transgenic
sugarcane

SG
PCA,

LDA, HCA

The optimal SG-PCA-LDA model
for positive and negative samples

were 94.3% and 96.0%,
respectively, and that of the

optimal SG-PCA-HCA model for
positive and negative samples

were 92.5% and 98.0%,
respectively.

Yafeng
Zhai et al.

Transgenic
wheat

Normalization BPR

A model for identification of wheat
varieties was developed using
PCA combined with biomimetic

pattern recognition method.

Aderval S.
Lunaet al.

Transgenic
soybean oils

MC, MSC, OSC,
SG 1st, 2nd
derivatives

SVM-DA,
PLS-DA

The classification rate of SVM-DA
was 100% in the training group

and 100% and 90% in the
validation group for non-GMO

and GMO soybean oil samples.
In PLS-DA model, the

classification rates were 95% and
100% for the training group and
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