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Nanomaterials serve as carriers for transporting conventional drugs or proteins through lysosomes to various

cellular targets. The basic function of lysosomes is to trigger degradation of proteins and lipids. Understanding of

lysosomal functions is essential for enhancing the efficacy of nanoparticles-mediated therapy and reducing the

malfunctions of cellular metabolism. The lysosomal function is modulated by the movement of ions through various

ion channels. 
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1. Lysosomal Target of Nanoparticles (NPs) and Modulation
of NPs for Lysosomal Function

1.1. pH Alteration

The primary function of the lysosome is the degradation of proteins and lipids . The regulation of lysosomal pH

has been linked to various cellular functions including the degradation of intracellular compartments. For its cellular

functions, lysosomal lumen has to be maintained at an acidic pH . Degradation of proteins, which is a crucial

function of the lysosome, is carried out by more than 60 kinds of lysosomal hydrolases , and these hydrolases

are optimized for the highly acidic environment of lysosomes (between pH 4.5 and 5.0) . The lysosome as a

cellular digestive system eliminates the garbage materials from autophagy and phagocytosis . Thus,

destabilization of lysosomal pH thorough alkalization leads to cellular toxicity and even causes lysosomal storage

disease (LSD) . The application of NPs can mediate various cellular functions by modulating lysosomal pH.

Gold NPs (AuNPs) are known to reduce lysosomal activity by alkalization of the lysosomal lumen . This reaction

triggers oxidative stress, mitochondrial damage, and decreases cell migration/invasion . In particular, 50-nm

sized AuNPs induce autophagosomal accumulation of LC3 and block p62 degradation . Silver NPs (AgNPs)

also suppress autophagic responses by decreasing transcription factor EB (TFEB) protein expression, which is

followed by lysosomal alkalization . In addition, rare earth oxide NPs (REONPs)-mediated alkalization induces

the activation of interleukin-1β IL-1β by an inflammasome .

1.2. Cell Viability

The lysosome consists of a typical single phospholipid bilayer to control important cellular functions . The

lysosomal membrane acts as the connector to contact other compartments such as autophagosome ,
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mitochondria , and endoplasmic reticulum (ER) . On the lysosomal membrane, numerous proteins play

important roles such as the mammalian target of rapamycin complex 1 (mTORC1) (nutrient sensing) , V-ATPase

(Vacuolar type of H -ATPase) (pH homeostasis) , and ion channels/transporters . In addition, deficiency of

several lysosomal membrane proteins trigger various diseases such as the Danon disease (lysosome associated

membrane proteins, LAMP-2) , malignant infantile osteopetrosis (the chloride channel 7, CLC-7) , and actin

myoclonus-renal failure syndrome (lysosomal integral membrane protein-2) . Damaged lysosome mediates

lysosomal membrane permeabilization (LMP), which contributes to cell death  and induces several diseases

such as LSD and other neurodegenerative disease .

1.3. Protein Activity and Expression

Various lysosomal functions are mediated by more than 200 integral lysosomal membrane proteins , including (1)

the mechanistic target of mTORC1, which is activated by nutrient starvation , and acts as a negative regulator

of autophagy , and (2) LAMPs, which protect the lysosomal membrane against lysosomal hydrolases not to

degrade . NPs induce an inhibitory effect on the mTORC1 pathway to activate autophagy: AgNPs (decreases

lysosomal protease activities) , Zinc oxide (ZnO) NPs (induces macrophage cell death) , and REONPs

(induces lysosomal imbalance by TFEB nucleus translocation) . ZnO NPs induce an aberrant expression pattern

and de-glycosylation of LAMP-2 by ZnO-induced reactive oxygen species (ROS), which trigger cell death in lung

epithelial cells . Additionally, NPs modulate lysosomal motility . Lysosome movement reveals two directions:

toward the peripheral cytoplasm (anterograde)  and juxtanuclear region (retrograde) . To carry out

autophagic flux, lysosomes have to move to the juxtanuclear region , and the dynein complex is the motor

protein for retrograde transport . Treatment with carbon nanotubes decreases the expression of synaptosomal-

associated protein (SNAP), which is a regulating factor of dynein  that blocks retrograde transport and, thus, the

autophagic pathway . Taken together, the lysosomal pathways of NPs and occupied proteins may mediate

numerous functions. Thus, careful and more extensive consideration of lysosomal-associated NPs needs to be

done.

1.4. Accumulation of NPs

Toxic cellular components, such as cytoplasmic macromolecules, damaged or misfolded proteins, and other worn-

out organelles, are removed by lysosomes to maintain metabolic homeostasis . Thus, the degradation role of

lysosomes is essential for carrying out cellular homeostasis  including lipid catabolism , cell growth , and

neurotransmission . However, several NPs interrupt lysosomal degradation and deposit the lysosomal

compartment in the cytoplasm. Exposure to AgNPs and copper oxide (CuO) NPs can induce agglomeration of

lysosomes and subsequent cellular damage, which leads to cell death in human lung alveolar epithelial cells 

and human umbilical vein endothelial cells . In addition, NPs can accumulate in lysosomes. SiO NPs and PNPs

impair cell viability and induce lysosomal swelling, which is followed by their accumulation in lysosomes and

triggers lysosomal dysfunction and apoptosis .
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2. Regulation of Lysosomal pH and Its Physiological
Function

The lysosomal pH gradient is generated and maintained by movement of hydrogen ions (H ) into the lysosomes

through the action of vacuolar-type ATPases (V-ATPases) , which is supplemented further by movement of other

ions . Thus, for effective and continuous movement of H  into the lysosome, an accompanying counter-ion

movement is necessary .

The lysosomal V-ATPases consists of two domains: V  domain, which hydrolyses ATP, and the V  domain, which

translocates H  ions across the lysosomal membrane . The catalytic domain V  drives a rotary H  transport

motor by hydrolyzing ATP with translocation of H  . In this case, the V-ATPase rotor is operated in only one

direction with an irreversible ATP hydrolysis due to the movement of H  from cytosol to the lysosomal lumen .

The continuous V-ATPase-mediated H  pumping generates a positive charge in the lysosomal lumen, which

inhibits any further movement of H  . To dissipate this membrane potential, other ions have to be transferred in

the opposite direction, and this process is referred to as the counterion flux . Counter ion movement is

suggested as both entering anions and exiting cations through the lysosomal lumen . One important counter ionic

candidate is chloride, transferred by CLC-7, as attenuation of CLC-7 leads to lysosomal dysfunction such as LSD

and osteopetrosis . Another candidate counter ion is K , transferred by TMEM175. Its mutation induces

neuronal degeneration and LSD . The R740S mutant osteoclasts, mutated in the V-ATPase α3 subunit, possess

a higher lysosomal pH, and shows altered mTORC expression (increase in basal protein level and decrease of

gene expression) and activity, which, in turn, plays a key role in cell proliferation . Additionally, acidification of

lysosomes can induce macrophages to secrete N-acetyl-β-D-glucosaminidase through lysosomal exocytosis 

, which includes absorption of cytochrome c in rat kidney during renal metabolism , and transport of cystine,

the product of protein degradation by cathepsin, from lysosomes to cytosol . Thus, alteration of lysosomal pH

can be like a commander’s order to modulate the cellular life cycle.

3. Lysosome-Associated Ion Channels for Lysosomal
Function

The lysosomal function is modulated by the ion movement and subsequent pH regulation. This movement is

accomplished through various ion channels (Figure 1, Table 1).
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Figure 1. The channels localized in lysosomal membrane to transport ions. These channels and transporters can

regulate lysosomal and cellular functions through transporting and maintaining hydrogen, chloride, Ca , and

potassium which indicated in Table 1.

Table 1. The relationship between lysosomal ion channels and cellular functions.

2+

Channels Mechanisms and Related Diseases Ref.

CLC-3 Promotion of lysosomal acidification

CLC-6 LSD in CLC-6 mutated neuronal cells
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Channels Mechanisms and Related Diseases Ref.

CLC-7

Maintenance of acidic pH of lysosomes

Decrease of dentinogenesis and dental bone formation in CLC-7 deficient

mice

Degradation of fAβ which drives AD

Osteopetrosis in CLC-7 mutation

LSD and neurodegeneration in CLC-7-deficient mice

CFTR

Support lysosomal acidification

Decrease of bacteria killing function and phago-lysosomal fusion in

macrophage

TRPM2

Induce DC maturation and migration

Increase of actin remodeling

Increase of pancreatic β cell apoptosis

Increase LMP, NLRP3 inflammasome, and mitochondrial fission on the

plasma membrane

TRPML1 Maintenance of acidic pH of lysosomes

Increase of large particle phagocytosis, bone remodeling, gastric acid
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Abbreviations: CLC: Chloride channel; CFTR: Cystic fibrosis transmembrane conductance regulator; TRPM2:

Transient receptor potential melastatin 2; TRPML1: Transient receptor potential mucolipin 1; TMEM175:

Transmembrane protein 175; TPC: Two pore channel; AD: Alzheimer’s disease; DC: dendritic cell; LMP: Lysosomal

membrane permeabilization; NLRP3: NACHT, LRR and PYD domains-containing protein 3; NPC: Niemann-Pick

disease type C.

4. NP-Induced Proton Sponge Effect through Ion Channels in
the Tumor System

Swelling of lysosomes has the potential to increase cellular toxicity by releasing lysosomal compartments and

nanoparticles . The lysosomal ‘proton sponge effect’ is triggered by the influx of cationic nanoparticles with

hydrogen and chloride ions to lysosomes . Accumulated ions in the lysosome may trigger water intake to

equilibrate the physiological osmolarity and, subsequently, induce lysosomal rupture . It has been addressed

that conceptual use of the lysosomal pH-dependent system and lysosomal rupture develops the self-assembled

luminescent AuNPs by the swelling property . Lee et al. reported that encapsulated AuNR-DOX in lysosomes is
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Related in autophagy, cancer cell migration, and cellular pigmentation

Related in Parkinson’s disease
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Promotion of endo-lysosomal fusion

Related in liver fibrogenesis
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dissociated with DOX by lysosomal hydrolases. A charged linker of AuNR is opened and then recruited negative

charged ions such as chloride into the lysosome. The ionic accumulation is developed, and lysosomal rupture

occurred. Released chloride from the lysosome through lysosomal rupture activates Ca  influx channel TRPM2 in

the plasma membrane and, lastly, overload of Ca  triggers the enhanced apoptotic effect including the effect of

DOX in cancer cells . The intracellular mechanism of nanomaterials and its related channels is now started.

However, the effect of nanoparticles on lysosomal ion channels and transporters has still been poorly studied. To

use nanomaterials for medicines, understanding the relationship between nanoparticles and lysosomal ion

channels has to be expanded.

5. Clinical Application and Limitation of Nanomaterials

As mentioned earlier, NPs have a bio-toxic effect on lysosomes by triggering pH alteration, malfunctions of protein

activity, accumulation in lysosomes, and subsequent cell death. The effect of NPs on cellular functions is

summarized in Table 2. Accordingly, application of NPs has limitations for nanodrugs and nano-therapies. Thus,

recent efforts have challenged to overcome these limitations by maximizing transport ability or reducing

cytotoxicity.

Table 2. The effect of nanoparticles (NPs) on cellular functions.
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