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Nanomaterials serve as carriers for transporting conventional drugs or proteins through lysosomes to various
cellular targets. The basic function of lysosomes is to trigger degradation of proteins and lipids. Understanding of
lysosomal functions is essential for enhancing the efficacy of nanoparticles-mediated therapy and reducing the
malfunctions of cellular metabolism. The lysosomal function is modulated by the movement of ions through various

ion channels.
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1. Lysosomal Target of Nanoparticles (NPs) and Modulation
of NPs for Lysosomal Function

1.1. pH Alteration

The primary function of the lysosome is the degradation of proteins and lipids L2, The regulation of lysosomal pH
has been linked to various cellular functions including the degradation of intracellular compartments. For its cellular
functions, lysosomal lumen has to be maintained at an acidic pH [El. Degradation of proteins, which is a crucial
function of the lysosome, is carried out by more than 60 kinds of lysosomal hydrolases 4, and these hydrolases
are optimized for the highly acidic environment of lysosomes (between pH 4.5 and 5.0) 4l The lysosome as a
cellular digestive system eliminates the garbage materials from autophagy and phagocytosis BIZE Thus,
destabilization of lysosomal pH thorough alkalization leads to cellular toxicity and even causes lysosomal storage
disease (LSD) B The application of NPs can mediate various cellular functions by modulating lysosomal pH.
Gold NPs (AuNPs) are known to reduce lysosomal activity by alkalization of the lysosomal lumen [, This reaction
triggers oxidative stress, mitochondrial damage, and decreases cell migration/invasion . In particular, 50-nm
sized AuNPs induce autophagosomal accumulation of LC3 and block p62 degradation 22, Silver NPs (AgNPs)
also suppress autophagic responses by decreasing transcription factor EB (TFEB) protein expression, which is
followed by lysosomal alkalization (231, In addition, rare earth oxide NPs (REONPs)-mediated alkalization induces

the activation of interleukin-1p IL-1B by an inflammasome 14],

1.2. Cell Viability

The lysosome consists of a typical single phospholipid bilayer to control important cellular functions 22181 The

lysosomal membrane acts as the connector to contact other compartments such as autophagosome L7U18]
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mitochondria 19, and endoplasmic reticulum (ER) 29, On the lysosomal membrane, numerous proteins play
important roles such as the mammalian target of rapamycin complex 1 (mMTORC1) (nutrient sensing) 21, V-ATPase
(Vacuolar type of H*-ATPase) (pH homeostasis) 22, and ion channels/transporters 23l In addition, deficiency of
several lysosomal membrane proteins trigger various diseases such as the Danon disease (lysosome associated
membrane proteins, LAMP-2) 24, malignant infantile osteopetrosis (the chloride channel 7, CLC-7) 23, and actin
myoclonus-renal failure syndrome (lysosomal integral membrane protein-2) 28, Damaged lysosome mediates
lysosomal membrane permeabilization (LMP), which contributes to cell death 2728 and induces several diseases

such as LSD and other neurodegenerative disease [2239(31],

1.3. Protein Activity and Expression

Various lysosomal functions are mediated by more than 200 integral lysosomal membrane proteins &, including (1)
the mechanistic target of mMTORC1, which is activated by nutrient starvation 28321 and acts as a negative regulator
of autophagy 28331 and (2) LAMPs, which protect the lysosomal membrane against lysosomal hydrolases not to
degrade B4, NPs induce an inhibitory effect on the mTORC1 pathway to activate autophagy: AgNPs (decreases
lysosomal protease activities) 2, Zinc oxide (ZnO) NPs (induces macrophage cell death) 28, and REONPs
(induces lysosomal imbalance by TFEB nucleus translocation) B2, ZnO NPs induce an aberrant expression pattern
and de-glycosylation of LAMP-2 by ZnO-induced reactive oxygen species (ROS), which trigger cell death in lung
epithelial cells [28. Additionally, NPs modulate lysosomal motility 9. Lysosome movement reveals two directions:
toward the peripheral cytoplasm (anterograde) 294l and juxtanuclear region (retrograde) 2. To carry out
autophagic flux, lysosomes have to move to the juxtanuclear region 2232 and the dynein complex is the motor
protein for retrograde transport 42, Treatment with carbon nanotubes decreases the expression of synaptosomal-
associated protein (SNAP), which is a regulating factor of dynein ¥4l that blocks retrograde transport and, thus, the
autophagic pathway 2. Taken together, the lysosomal pathways of NPs and occupied proteins may mediate
numerous functions. Thus, careful and more extensive consideration of lysosomal-associated NPs needs to be

done.

1.4. Accumulation of NPs

Toxic cellular components, such as cytoplasmic macromolecules, damaged or misfolded proteins, and other worn-
out organelles, are removed by lysosomes to maintain metabolic homeostasis Bl. Thus, the degradation role of
lysosomes is essential for carrying out cellular homeostasis 2 including lipid catabolism 48], cell growth 44, and
neurotransmission 8. However, several NPs interrupt lysosomal degradation and deposit the lysosomal
compartment in the cytoplasm. Exposure to AgNPs and copper oxide (CuO) NPs can induce agglomeration of
lysosomes and subsequent cellular damage, which leads to cell death in human lung alveolar epithelial cells 42
and human umbilical vein endothelial cells BY. In addition, NPs can accumulate in lysosomes. SiO,NPs and PNPs
impair cell viability and induce lysosomal swelling, which is followed by their accumulation in lysosomes and

triggers lysosomal dysfunction and apoptosis 52521,
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2. Regulation of Lysosomal pH and Its Physiological
Function

The lysosomal pH gradient is generated and maintained by movement of hydrogen ions (H") into the lysosomes
through the action of vacuolar-type ATPases (V-ATPases) 23, which is supplemented further by movement of other
ions Bl. Thus, for effective and continuous movement of H* into the lysosome, an accompanying counter-ion

movement is necessary 2.

The lysosomal V-ATPases consists of two domains: V; domain, which hydrolyses ATP, and the V, domain, which
translocates H* ions across the lysosomal membrane 24. The catalytic domain V,, drives a rotary H* transport
motor by hydrolyzing ATP with translocation of H* 2238l |n this case, the V-ATPase rotor is operated in only one
direction with an irreversible ATP hydrolysis due to the movement of H* from cytosol to the lysosomal lumen &,
The continuous V-ATPase-mediated H* pumping generates a positive charge in the lysosomal lumen, which
inhibits any further movement of H* BZ. To dissipate this membrane potential, other ions have to be transferred in
the opposite direction, and this process is referred to as the counterion flux BB4. Counter ion movement is
suggested as both entering anions and exiting cations through the lysosomal lumen &l. One important counter ionic
candidate is chloride, transferred by CLC-7, as attenuation of CLC-7 leads to lysosomal dysfunction such as LSD
and osteopetrosis [23I38] Another candidate counter ion is K*, transferred by TMEM175. Its mutation induces
neuronal degeneration and LSD B2, The R740S mutant osteoclasts, mutated in the V-ATPase a3 subunit, possess
a higher lysosomal pH, and shows altered mTORC expression (increase in basal protein level and decrease of
gene expression) and activity, which, in turn, plays a key role in cell proliferation 2183 Additionally, acidification of
lysosomes can induce macrophages to secrete N-acetyl-B-D-glucosaminidase through lysosomal exocytosis (61!
(621 which includes absorption of cytochrome c in rat kidney during renal metabolism €3l and transport of cystine,
the product of protein degradation by cathepsin, from lysosomes to cytosol [#4. Thus, alteration of lysosomal pH
can be like a commander’s order to modulate the cellular life cycle.

3. Lysosome-Associated lon Channels for Lysosomal
Function

The lysosomal function is modulated by the ion movement and subsequent pH regulation. This movement is

accomplished through various ion channels (Figure 1, Table 1).
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Figure 1. The channels localized in lysosomal membrane to transport ions. These channels and transporters can
regulate lysosomal and cellular functions through transporting and maintaining hydrogen, chloride, Ca®*, and

potassium which indicated in Table 1.

Table 1. The relationship between lysosomal ion channels and cellular functions.

Channels Mechanisms and Related Diseases Ref.
CLC-3 Promotion of lysosomal acidification [65][66]
CLC-6 LSD in CLC-6 mutated neuronal cells [67]
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Channels Mechanisms and Related Diseases Ref.
Maintenance of acidic pH of lysosomes [68](69]

Decrease of dentinogenesis and dental bone formation in CLC-7 deficient

[z0](71]
mice
CLC-7
Degradation of fAB which drives AD [z2](zs]
Osteopetrosis in CLC-7 mutation [Z4)[ZS][76][77]
LSD and neurodegeneration in CLC-7-deficient mice [S8][75)]
Support lysosomal acidification (8]
CFTR
Decrease of bacteria killing function and phago-lysosomal fusion in [79]
macrophage
Induce DC maturation and migration (89]
Increase of actin remodeling (81]
TRPM2
Increase of pancreatic 3 cell apoptosis 82
Increase LMP, NLRP3 inflammasome, and mitochondrial fission on the [83][84]
plasma membrane
TRPML1 Maintenance of acidic pH of lysosomes (8]
(86][87][88](89]

Increase of large particle phagocytosis, bone remodeling, gastric acid
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Channels Mechanisms and Related Diseases Ref.

secretion, and myocytes apoptosis

Stomach hypertrophy, hypergastrinemia, LSD, mucolipidosis, NPC, and AD in [86][90][91][92][93]

94][95][96
TRPML1 deficiency AR
Support lysosomal Ca2+ signaling and pH regulation Sl
TMEM175
Related in LSD (28]
Related in autophagy, cancer cell migration, and cellular pigmentation (29][100}(201]
TPC
Related in Parkinson’s disease (102)[103]
Promotion of endo-lysosomal fusion (L04][105]
?
P2X4 2
Related in liver fibrogenesis S
J16, 32,
223-253.

4. Pu, J.; Guardia, C.M.; Keren-Kaplan, T.; Bonifacino, J.S. Mechanisms and functions of lysosome

Abbyevigitsisig COCC EIhBdile2 o0& NEPICEBRO-AE89 . fibrosis transmembrane conductance regulator; TRPM2:

Transient receptor potential melastatin 2; TRPML1: Transient receptor potential mucolipin 1; TMEM175:
5. Mindell, J.A. L%/sosomal acidification mechanisms. Annu. Rey. Physiol. 2012, 74, 69—86.
Transmembrane protein 175; TPC: Two pore channel; AD: Alzheimer’s disease; DC: dendritic cell; LMP: Lysosomal
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1 Related Cellular Function NPs Details Referenceyp of

Increase of oxidative stress, mitochondrial damage, and T
1 AUNPs ) o ) (1] me
decrease cell migration/invasion

pH alteration :
2 Accumulation of LC3 and block p62 degradation 2 dnction
(alkalization of
2 lysosome) AgNPs Decrease of TFEB protein expression s 3S
\TPase.
REONPs Activation of IL-1 inflammasome [14]
2 n the
Cell viability PNPs Decrease of autophagic flux [111]
2 )chem.
(cell death)
Decrease of cathepsin release _—
2 5.J.;
SiO, NPs Increase of membrane damage and NLRP (B80S
inflammasome
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2 Related Cellular Function NPs
TiO, NPs
P
Gd,03 NPs
2 AgNPs
2 REONPs
P
Protein activity and
. ZnO NPs
expression
3
3
Carbon
nanotube
3
CuO NPs
Accumulation of NPs
2 .
- SiO2 NPs,
PNPs

(@8]

Med. 2006, 27, 495-502.

Details

Increase of membrane damage

Increase of membrane damage and necrosis

Decrease of lysosomal protease activities

Induce lysosomal imbalance by inhibiting mMTORC1

pathway

Increase of macrophage cell death by inhibiting
mTORC1 pathway

Deglycosylation of LAMP-2

Decrease of SNAP

Subsequent cellular damage leading to cell death by

agglomeration of lysosomes

Induce lysosomal swelling leading to apoptosis
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