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The cell membrane is frequently subjected to damage, either through physical or chemical means. The swift restoration of

the cell membrane’s integrity is crucial to prevent the leakage of intracellular materials and the uncontrolled influx of

extracellular ions. Consequently, wound repair plays a vital role in cell survival, akin to the importance of DNA repair.
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1. Introduction

The cell membrane serves as a crucial barrier between the extracellular and intracellular spaces, yet it is consistently

vulnerable to physical or chemical damage. Such injuries compromise the membrane’s integrity, leading to an influx of

undesirable substances into the cell and cytoplasmic loss. Local wounds on the cell membrane also impact cell polarity

during migration  and influence the division axis and symmetrical division in cell division . Mechanically active tissues,

like skeletal and cardiac muscles, frequently experience membrane wounds due to repeated contractions .

Ischemia-reperfusion injury followed by heart attack and stroke also damages the cell membrane . Infection by

pathogenic funguses, bacteria, and viruses and their pore-forming toxins can also result in membrane wounds at the cell

membrane . Loss of the wound repair function is observed in various diseases, including diabetes , muscular

dystrophies , acute kidney injury , and vitamin deficiencies . Recent studies have identified defects in wound

repair as common in Parkinson’s and Alzheimer’s diseases . Plant cells, affected by freezing damage in cold

seasons, also possess the capability to repair damaged membranes . Similar to DNA repair, wound repair is a

physiologically vital phenomenon for living cells. Moreover, many methods for introducing extracellular substances into

cells, such as microinjection and electroporation, rely on cellular wound repair. See also recent good reviews 

.

The mechanisms of wound repair have been extensively studied across various model organisms, including mammalian

cells , amphibian oocytes , echinoderm oocytes , fruit flies , nematodes ,

amoebae , yeast , ciliate , plant cells , and Dictyostelium cells . A common feature among these

mechanisms is the essential role of Ca  influx from an external medium in the wound repair process. While the

“membrane patch hypothesis” suggests that cytosolic membrane vesicles accumulate at the wound site to form an

impermanent “patch” for emergency wound pore plugging , alternative hypotheses that do not involve patching

have also been proposed . However, there is no universally accepted general model for the mechanisms driving

the repair process.

2. The Cell Can Repair a Wounded Cell Membrane

The presence of a cell membrane wound repair mechanism must be noticed during the initial phases of single-cell

microsurgery and microinjection experiments . For example, when a Dictyostelium cell is divided into two

fragments using a microneedle, the nucleate fragment exhibits normal migration, whereas the anucleate fragment is

incapable of doing so . This experiment underscores the nucleus’s indispensable role in cell migration and

simultaneously emphasizes the prompt repair of the cell membrane, which was wounded during microsurgery—a

pioneering observation in Dictyostelium cells.

The majority of wound experiments have focused on a limited life stage of cells. The life cycle of Dictyostelium discoideum
is broadly categorized into four stages: vegetative, aggregation, multicellular, and culmination. After the starvation of

vegetative cells, individual cells aggregate to form streams towards the aggregation center. Aggregation is mediated by

the chemotaxis of cells toward cAMP excreted from the aggregation centers. This process results in the formation of a

multicellular organism and eventually leads to the development of fruiting bodies consisting of spores and stalks. Wound

repair is observed at all stages in Dictyostelium cells (Figure 1A), including spore cells, which are dormant cells with a
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rigid cell wall. Furthermore, wound repair is noted at different stages of the cell cycle, such as interphase and the mitotic

stage, in Dictyostelium cells .

Figure 1. Wound repair of the cell membrane. (A) Relative amplitudes of actin accumulation at the wound site over time

following starvation (0 h). As illustrated in the lower drawings, upon initiation of vegetative cell starvation, individual cells

aggregate, forming streams direct toward the aggregation center. This process leads to the creation of a multicellular

structure, culminating in the development of a fruiting body. Importantly, wound repair is observed at every stage of the

lifecycle in Dictyostelium discoideum. (B) Schematic representation of the enhanced laserporation with gold coating. The

wound diameter is usually set at 0.5 μm for Dictyostelium cells. (C) A representative sequence of fluorescence images

capturing PI influx after laserporation. (D) Temporal profiles of PI influx in the presence (BSS, control) and absence

(EGTA) of external Ca . The wound laser beam was applied at 0 sec. (E) A typical sequence of fluorescence images

illustrating FM dye influx after laserporation. (F) Laserporation of a cell expressing GFP-cAR1 resulted in the appearance

of a black spot on the cell membrane. The black spot transiently expanded, then contracted, and finally closed. (G) The

time course of the black spot diameter. (H) A sequence of fluorescence images featuring a cell expressing GCAMP6s after

laserporation. (I) Temporal profiles of GCAMP6s fluorescence intensities in the presence (BSS) and absence (EGTA) of

external Ca . (J) A typical sequence of fluorescence images illustrating PI influx after laserporation in the absence

(EGTA) of external Ca . Scale bars, 10 µm. Figures are posted from  with  CC BY licence.

3. Monitoring of Wound Repair

Various methods have been employed to investigate the wound repair mechanism. In early experiments, the cell

membrane was wounded mainly by microneedle poking in large cells such as protozoan amebae , amphibian

eggs , and echinoderm eggs . For small cells like yeast, animal cultured cells, and Dictyostelium cells, laser

ablation has been predominantly used due to the technical challenges and time constraints associated with microneedle

poking in such small cells. Recent research also utilizes laser ablation for large cells, offering precise-sized wounds and
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accurate timing. However, both laser ablation and previous methods not only damage the cell membrane but also impact

intracellular structures, including cortical actin networks, microtubules, and organelles.

To address this, researchers have developed an improved laser ablation method that selectively injures only the cell

membrane. As depicted in Figure 1B, after placing cells on a carbon or gold-coated coverslip, a laser beam is focused on

the coat underneath the cells. The laser energy absorbed by the coat generates heat and/or plasmon , selectively

injuring the cell membrane attached to the coat . This method has been originally invented for the introduction of

extracellular substances into cells . Instead of wounding individual cells, for biochemical analysis, a large number of

cells can be wounded by treating with pore-forming agents or detergents .

For monitoring the wounding process, propidium iodide (PI) or FM1-43 has been widely used. PI, a cell-impermeant dye

emitting fluorescence upon binding to RNA or DNA, and FM1-43, a cell-impermeable fluorescent lipid analog emitting

fluorescence upon insertion into the membrane, are placed in the external medium. Their entry into the cytosol is

monitored by the increase in fluorescence upon wounding. As shown in Figure 1C, PI fluorescence begins to increase at

the wound site upon injury, spreading over the cytosol, suggesting PI entry through the wound pores. Figure 1D (BSS)

illustrates the time course of PI fluorescence intensity in the cytosol of wounded cells, indicating that PI influx ceases

within 2–3 s after injury, terminating urgent wound repair within this timeframe. Figure 1E demonstrates the influx of FM1-

43 dye upon wounding, also showing that the dye enters from the wound pore and spreads across the cytoplasm.

To visualize the wound pore in Dictyostelium cells, cells expressing GFP-cAR1 (cAMP receptor) as a membrane protein

marker are wounded. Immediately after wounding, a black spot appears at the laser application site (Figure 1F). This

black spot is not generated by photobleaching, as it transiently expands slightly, then shrinks, and eventually closes

(Figure 1G). This closure is not uniform but occurs from the wound edge to the center.

4. Ca  Influx as the First Signal

The initial signal common to all examined cells across various species is the influx of Ca  from the wound pore 

. Monitoring this influx is feasible using a Ca  indicating fluorescent dye or a GFP-based Ca  indicator. Figure 1H

presents a time series of fluorescence images of Dictyostelium cells expressing GCAMP6s, a GFP-based fluorescent

Ca  indicator. In Figure 1I (BSS), the time course of fluorescence intensities in the cytosol is depicted. Intracellular Ca

concentration (Ca ) promptly rises upon wounding, returning to resting levels within approximately 7 s. In the absence of

external Ca , Ca  remains unchanged upon wounding (Figure 1I, EGTA), indicating that the influx of Ca  triggers the

increase in Ca . Without external Ca , PI influx persists, leading to the eventual death of wounded cells (Figure 1D,

EGTA, and Figure 1J). Additionally, the black spot observed in experiments using GFP-cAR1 does not close without Ca

influx. A concentration higher than 0.1 mM of Ca  in the external medium is necessary for wound repair in Dictyostelium
cells .

Ca  influx induces the release of Ca  from intracellular stores through the calcium-induced calcium release (CICR)

mechanism . Deleting CICR reduces the amplitude of Ca  but does not impact wound repair, indicating that a local

increase in Ca  is crucial, not a global one . On the other hand, MCOLN1, an endosomal and lysosomal Ca -

channel, is crucial for cell membrane repair in muscle cells, emphasizing the significance of Ca  release from intracellular

stores in wound repair .

Various intracellular targets of Ca  for wound repair include dysfelin, mitsugmin 53 (MG53), neuroblast differentiation-

associated protein (AHNAK), calpain, calmodulin, annexins, the endosomal sorting complex required for transport

(ESCRT), protein kinase C, and actin-related proteins. These will be discussed in detail later.

5. Closing Wound Pores

5.1. Spontaneous Self-Sealing

Ruptured artificial lipid bilayer membranes exhibit spontaneous resealing . Similarly, extremely small wound pores,

such as those generated by electroporation in live cells at the nanometer scale, are thought to undergo spontaneous

resealing due to thermodynamically unfavorable lipid disorder (Figure 2A). However, even with such small pores, there

may be a necessity for an active wound repair mechanism . Additionally, membrane pores created by pore-forming

toxins, despite being nanometer-sized, require an active wound repair mechanism .

[48][61]

[48]

[62]

[63][64][65]

2+

2+ [30][32][41]

[50][66] 2+ 2+

2+ 2+

i
2+

2+
i
2+ 2+

i
2+ 2+

2+

2+

[51]

2+ 2+

[67][68]
i
2+

i
2+ [58] 2+

2+

[69]

2+

[70]

[71]

[7][23][72]



Figure 2. Various models for wound repair mechanisms. (A) Spontaneous self-sealing. (B) Self-sealing by regulation of

surface tension. Black arrows indicate the direction of the membrane flow. (C) Sealing by protein aggregation. (D) Sealing

by membrane patch. (E) Endocytosis of damaged membrane. (F) Vesicle budding and shedding to the outside. These

illustrations are simplified for a better understanding of basic concepts.

5.2. Self-Sealing by Regulation of Surface Tension

Given the tension on the cell surface, larger pores cannot spontaneously reseal against the cell surface tension. The

wound-induced influx of Ca  triggers the fusion of exocytic vesicles with the cell membrane, extending beyond the wound

site and enlarging the plasma membrane (Figure 2B). This process results in a reduction of cell surface tension,

facilitating spontaneous resealing and closure of the wounded pore . In large cells, although the actomyosin ring exerts

force to close the wound pore against the opening force of the cell surface tension, self-sealing alone is insufficient, and a

membrane patch is also required for sealing, as described later.

5.3. Sealing by Protein Aggregation

The wounded pores have been suggested to be clogged by the aggregation of proteins, including annexins and actin

(Figure 2C). Annexin A5 self-assembles into two-dimensional arrays on the membrane upon Ca  activation, a crucial

aspect of its role in plasma membrane repair in mammalian cells . Similar clogging phenomena have been reported for

other annexins, which collaborate with wound repair-related proteins such as actin, dysferin, and MG53 . Actin

accumulates at the wound site, potentially serving a clogging function through actin gelation. However, this accumulation

does not happen immediately upon wounding but occurs after the cessation of PI influx.

5.4. Sealing by Membrane Patch

Mammalian red blood cells, lacking endomembranes, including nuclei, take a longer time to reseal wound membranes or

fail to repair in physiological conditions, suggesting that endomembranes are necessary for wound repair . The

membrane patch hypothesis was initially proposed in large cells like echinoderm and frog oocytes (Figure 2D). A local

increase in Ca  induces the fusion of small cytoplasmic vesicles with each other, creating a continuous membrane plug
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at the wound site along with the plasma membrane . More recently, cortical granules in Xenopus oocytes have been

identified as such intracellular compartments, and their fusion was visualized in live cells . This wound repair

process is succeeded by the constriction of an actomyosin ring, akin to the contractile ring involved in cytokinesis.

Various sources for the membrane patch, including lysosomes , endosomes , MG53-rich vesicles , dysferlin-

containing vesicles , or AHNAK-positive “enlargeosomes” , have been proposed. However, these vesicles and

organelles might not meet the spatiotemporal requirements for rapid and efficient wound repair, considering the possibility

of multiple wounds with very short intervals .

Recently, researchers proposed that the vesicles for the membrane plug are newly generated at the wound site in

Dictyostelium cells . In influx experiments using FM dye, most of the FM fluorescence diffuses in the cytosol, but a

portion of FM dye remains at the wounded site and increases in size (Figure 1E), indicating membrane accumulation at

the wound site. In the PI influx experiment (Figure 1C), a portion of PI fluorescence also persists at the wound site,

suggesting that cytoplasm, including PI dye, is entrapped in the newly enclosed vesicles. It is improbable that the

membrane plug originates from the broken cell membrane due to the limited amount of the broken cell membrane.

Additionally, vesicles are unlikely to be transported from other locations since pharmacological disruption of microtubules

and actin did not impede membrane accumulation. Therefore, researchers propose that the vesicles for the membrane

plug are generated de novo at the wound site, although the mechanism for this generation remains unclear.

As described earlier, experiments using GFP-cAR1 show that the wound pore is not repaired from the wound edge to the

center. Therefore, the wound edge grows toward the center through vesicles repeatedly fusing with the edge of the cell

membrane, rather than forming a fused large patch to plug the wound pore.

5.5. Endocytosis of Damaged Membrane

Ca -triggered endocytosis is suggested to eliminate damaged membrane (Figure 2E). The membrane, including the

damaged portion, invaginates inward, and the resulting bud is removed by releasing it into the cell, dependent on Ca  

. Upon wounding, acid sphingomyelinase is secreted into the extracellular space through Ca -dependent lysosomal

exocytosis. This enzyme hydrolyzes sphingomyelin in the cell membrane into ceramide, facilitating membrane

invagination and vesiculation . Ceramide formation by sphingomyelinase also induces caveolae-mediated endocytosis,

internalizing the wounded membrane . It has been also reported that clathrin- and dynamin-mediated

endocytosis facilitates removing the wounds by pore-forming proteins or toxins .

In Dictyostelium cells, neither endocytosis nor exocytosis appears to contribute to membrane accumulation for wound

repair , despite the rapid turnover of the cell membrane through endocytosis–exocytosis coupling .

Notably, caveolin proteins are not present in Dictyostelium  and inhibitors of sphingomyelinase do not affect the wound

repair in Dictyostelium cells (our preliminary observations). Additionally, clathrin- and dynamin-mediated endocytosis does

not contribute to wound repair in Dictyostelium cells .

5.6. Vesicle Budding and Shedding to the Outside

Rather than endocytosis involving the inward budding and scission of the damaged membrane, vesicle budding or

blebbing toward the outside of the cell, followed by scission, facilitates the removal and shedding of damaged membrane

or pore-forming reagents (Figure 2F). Membrane-binding proteins for wound repair, such as the endosomal sorting

complex required for transport (ESCRT) and annexins, facilitate this type of shedding in a Ca -dependent manner in

mammal cells .

In Dictyostelium cells, FM dye that accumulates at the wound site remains there for the duration of observation. The

wounded sites do not move relative to the substrate and eventually shed onto the substrate as cells migrate .

6. Membrane-Binding Proteins in Wound Repair

For wound repair, various membrane-binding proteins, including annexins, the ESCRT complex, synaptotagmin, and

dysferin, have been proposed. These proteins also act as sensors, detecting damage to the cell membrane due to their

calcium-dependency .

6.1. Annexins

Annexins, a highly conserved and ubiquitous family of Ca - and phospholipid-binding proteins, play a crucial role in

wound repair . In vertebrates, 12 annexin subfamilies (A1–A11 and A13) have been identified.
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Annexins such as A1, A2, A5, and A6 accumulate at the wound site by binding to the inner cell membrane, particularly

acidic phospholipids like phosphatidylserine, in response to a Ca  influx. Through membrane binding and interactions

with other proteins, such as S100 family proteins, annexin prevents further expansion of the wound pore, reduces

membrane tension, and prepares the membrane for resealing .

Annexins induce curvature in the free-edge membranes and generate constriction force to close the wound pore through

annexin crosslinking . Annexins can also be cross-linked by transglutamilases in a Ca -dependent manner

, which have also been implicated in plasma membrane repair .

Moreover, annexins have been proposed to assemble into multimeric lattice structures, recruiting M53-laden vesicles and

mini-dysferlin72, effectively clogging the wound pore . Some annexins, such as annexin 1 and 2, can bind to

actin and stabilize actin filaments at the wound site .

Dictyostelium possesses two annexin genes, annexin C1 (annexin VII or synexin) and annexin C2 (annexin I) . Both

can bind phosphatidylserine in a Ca -dependent manner . Only annexin C1 accumulates at the wound site

immediately after wounding. Wounded annexin C1-null cells exhibit irregular curves with multiple peaks in PI influx, Ca

influx, and actin dynamics. Additionally, annexin C1-null cells have a significantly reduced survival rate following injury,

suggesting that annexin C1 partially contributes to wound repair in Dictyostelium cells .

6.2. ESCRT Complexes

The endosomal sorting complex required for transport (ESCRT) is categorized into five protein complexes (ESCRT-0,

ESCRT-I, ESCRT-II, ESCRT-III, and Vps4). These complexes play integral roles in various cellular processes, including

endosomal budding transport, virus budding, and cytokinesis. The ESCRT complex constricts and severs narrow necks

during membrane budding processes . Additionally, ESCRT complexes have been

implicated in shedding wounded membranes as extracellular vesicles . Upon injury, ESCRT complexes

promptly accumulate at the wound site, protrude the wounded membrane as a bud or bleb, and subsequently cut it off to

release extracellular vesicles. This ESCRT-mediated abscission of the wounded membrane appears to limit smaller-sized

wounds (<100 nm in diameter) .

Interestingly, ESCRT complexes also participate in repairing damaged membranes of intracellular organelles, such as the

nuclear envelope and lysosomes . Furthermore, ESCRT complexes mediate the sealing of holes in the

nascent nuclear envelope and nascent autophagosome .

While ESCRT complexes themselves are not sensitive to Ca , Ca -sensitive proteins like ALG-2 and calmodulin confer

Ca  sensitivity on ESCRT complexes . Recently, it has been reported that annexin A6 also plays a similar role

in the secretion of exosomes .

In Dictyostelium cells, components of the ESCRT complexes accumulate at the wound site immediately upon injury,

depending on the influx of Ca  . However, in ESCRT null cells, PI influx ceases normally, and actin dynamics are

observed, similar to wild-type cells. This suggests that ESCRT complexes are not essential for wound repair in

Dictyostelium cells .

During cytokinesis in animal cells, ESCRT complexes and annexins accumulate at the cleavage furrow and/or midbody

and are considered to play a role in cytokinesis . Dictyostelium cells lack a midbody and undergo

division through physical cutting via the constriction of the contractile ring and the traction force of the two daughter

fragments migrating in opposite directions . This suggests that this abscission might be a form of ‘physiological

wound’. However, preliminary observations indicate that neither ESCRT components nor annexins accumulate at the torn

edges, suggesting the existence of a novel mechanism for cytokinetic abscission in Dictyostelium cells.

6.3. Synaptotagmin

Synaptotagmin comprises a family of Ca -binding and membrane-trafficking proteins, with particular emphasis on its

well-characterized role in the release of synaptic vesicles in neurons, where it regulates Ca -dependent exocytosis .

Synaptotagmin 7, specifically, participates in the repair of wounded membranes through Ca -dependent lysosome

exocytosis . Knockdown mice lacking synaptotagmin 7 exhibit defects in wound repair . While Dictyostelium
possesses a synaptotagmin-like protein, there is currently no available information regarding its role in wound repair.
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6.4. Dysferlin

Dysferlin, a membrane protein within the Ferlin family involved in vesicle fusion, is notably abundant in skeletal and

cardiac muscle . Dysferlin binds to vesicles containing acid phospholipids, such as phosphatidylserine, through the

dysferlin C2 domain, relying on Ca  . Mice deficient in dysferlin display defects in wound repair in muscle cells and

develop muscular dystrophy . Dysferlin is proposed to generate a membrane patch by recruiting and fusing vesicles in

wounded skeletal and cardiac muscle cells . Dysferlin organizes vesicle fusion with the assistance of binding

partners like S100A10, annexin A2, AHNAK, caveolin-3, and TRIM72 (MG53) . TRIM72, also known as

MG53, which is highly expressed in muscle cells, assembles into a higher-ordered structure on the phosphatidylserine-

enriched membranes. This assembly and association with the membrane depend on its oligomeric assembly and

ubiquitination activity, facilitating vesicle transport to the wound site . Notably, Dictyostelium cells lack a dysferlin

homolog.
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