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Two-dimensional nanostructures (2DNS) attract tremendous interest and have emerged as potential materials for a

variety of applications, including biomolecule sensing, due to their high surface-to-volume ratio, tuneable optical and

electronic properties. Advancements in the engineering of 2DNS and associated technologies have opened up new

opportunities. Surface-enhanced Raman scattering (SERS) is a rapid, highly sensitive, non-destructive analytical

technique with exceptional signal amplification potential. Several structurally and chemically engineered 2DNS with added

advantages (e.g., π–π* interaction), over plasmonic SERS substrates, have been developed specifically towards

biomolecule sensing in a complex matrix, such as biological fluids. 
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1. Introduction

Biomolecule detection and quantification have become increasingly important in recent years, due to advancements in

clinical diagnosis, which requires newer technologies for rapid and accurate detection of molecules at ultratrace

concentrations. Since the historic development of enzymatic electrodes by Clark and Lyons in 1962 , there has been a

quest among researchers for advanced sensing technologies and this has resulted in the development of more

sophisticated and trustworthy sensors . Though several techniques have emerged, Raman spectroscopy has

sparked the most interest in biomolecule sensing due to its exceptional sensitivity rendered by the large signal

amplification, chemical specificity, rapid recognition and non-destructive nature. Raman spectroscopy identifies the

characteristic molecular vibrations and provides the fingerprints of the molecules with minimal to no sample preparation.

However, the weak signal, due to low scattering probability (typically 10 –10 ), was a bottleneck when deploying this

versatile technique in the detection of ultratrace target molecules, until the discovery of Surface-enhanced Raman

scattering (SERS) by Fleischmann et al., in 1974 . The observation of an enhanced Raman signal of pyridine on

roughed Ag electrodes eventually helped Raman spectroscopy to extend its applications up to the detection of a single

molecule .

The electromagnetic (EM) and chemical (CM) mechanisms are the two important phenomena behind the Raman signal

enhancement, proposed later by Van Duyne and Creighton groups, independently, in 1977 . The EM enhancement

originates from the excitation of surface plasmon on nanoscale plasmonic surfaces, mainly noble metal nanoparticles (Au

and Ag), which contributes dominantly (10  to 10  times) to the SERS enhancement. It is mainly determined by the

material morphology, dielectric constant of the medium and the localization of surface plasmon resonance (LSPR) and

their coupling .

The EM mechanism does not explain about the SERS enhancement with non-plasmonic substrates, e.g., oxides, nitrides,

chalcogenides, etc. This can be well understood by the formation of charge-transfer complex, and thus new electronic

states, of chemisorbed molecules with the substrates . The CM enhancement is mainly determined by the Fermi level

of the substrates and the molecules. The contribution from CM is relatively weaker (up to 10  times) than that of the EM

effect. However, CM has comprehensive advantages over EM, including cost-effectiveness, surface uniformity, signal

reproducibility, muted photo-bleaching and blinking effects. Further information about the mechanism of SERS can be

found in the excellent book by Eric and Pablo . Considerable advancements in understanding charge-transfer complex

formation and designing structurally, chemically engineered substrates have been made in the past two decades for the

detection of multi-fold trace chemicals and biomolecules, which includes RNA analysis from plant tissues and multiplexed

detection at a single-cell level .

The discovery of graphene by Novoselov and Geim in 2004  opened a new era in the material sciences, which leads to

the further development of various two-dimensional nanostructures (2DNS), including transition-metal dichalcogenides
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(TMDs), oxides, graphitic carbon nitride (g-C N ), hexagonal boron nitride (h-BN), black phosphorus (BP) and 2D

transition-metal carbide or nitride (MXenes) . Recently, nanosheets of metal organic framework (MOF) and

covalent organic framework (COF) have also joined the fascinating world of two-dimensional nanostructures. Apart from

easy synthesis, these 2DNS and their nanocomposites have several advantages in SERS because of their unique

physical and chemical properties, such as high uniformity with large specific surface areas, better chemical stability,

excellent mechanical and optical properties with fluorescence quenching capability, π-π* interaction with biomolecules

and good biocompatibility .

2. 2DNS as SERS Substrates

As mentioned earlier, the Raman signal enhancement by 2DNS is mainly through a charge-transfer mechanism. The

electronic structure of the analyte–substrate interface, which is primarily accomplished by the transfer of an electron from

the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO), determines the

contribution of CM (charge-transfer) to Raman signal amplification. Moreover, the π-interaction facilitates the

accumulation of analytes on their surface, which has a significant effect at lower concentrations. On the other hand, 2DNS

can anchor the plasmonic nanostructures for better dispersion, i.e., prevention of agglomeration. Here, the SERS

enhancement factor (EF), the degree of signal amplification , is improved as the essential nano-gaps are created by

the well-separated plasmonic nanostructures. Therefore, 2DNS were widely deployed for the later purpose. Figure 1
illustrates the use of 2DNS as a SERS substrate and support for nanostructured plasmonic SERS substrates. Table 1 lists

representative examples of various 2DNS employed as SERS substrates and support for plasmonic NPs.

Figure 1. Schematic illustration of (A) 2DNS SERS substrate rendering enhancement through CM and (B) 2DNS as

support for plasmonic NPs SERS substrate that enhances Raman signal by both CM (from 2DNS and NPs) and EM (from

NPs).

Table 1. Representative examples of 2DNS-SERS substrates (Rhodamine 6G (Rh6G); Rhodamine B (RhB); Malachite

Green (MG); Methylene Blue (MB); Crystal Violet (CV).

2DNS-SERS
Substrate Probe Molecules Mechanism EF Ref.

Graphene

Graphene Rh6G CM 1.7 to 5.6

UV/Ozone-GO RhB, Rh6G, and CV CM ∼10

rGO Rh6G CM ∼10

AgNPs/rGO Rh6G CM + EM 2.3 × 10

AuNPs/GO/CW Rh6G CM + EM 1.0 × 10

AgNPs/rGO RhB CM + EM 2.0 × 10

AuNPs/rGO/ MG CM + EM 3.8 × 10

AgNPs/CVD Graphene Rh6G CM + EM ∼10

TMD

TiS Rh6G CM 3.2 × 10

1T-W(MoTe ) Rh6G CM 1.8 × 10
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2DNS-SERS
Substrate Probe Molecules Mechanism EF Ref.

2H-TaS Rh6G CM 1.3 ×
10

Oxygen incorporated MoS Rh6G CM 1.4 × 10

MoTe β-sitosterol CM 1.3 × 10

HfTe Rh6G, CV, MB, and MG CM ∼10

AuNPs/HfTe MB CM + EM 1.7 × 10

AuNWs/MoS Rh6G and MB CM + EM ∼10

Black phosphorous (BP)

BPQDs/AgNPs/TiO 4-MBA CM + EM 2.5 × 10

BP flakes RhB CM ∼10

BP Nanosheets Rh6G CM 6.7 × 10

AgNPs/BP Interleukin-3 (IL-3) and procalcitonin
(PCT) CM + EM ∼10

Nitride

Hexagonal Boron Nitride (h-BN) MG, MB and Rh6G CM ∼10

Fluorinated h-BN Rh6G and CV CM ∼10

AgNPs/g-C N CV CM + EM 2.1 × 10

Hydrophilic hydrophobic g-C N @Ag MG CM + EM 3.2 × 10

AuNPs/g-C N Rh6G and Melamine CM + EM ∼10

MXenes

AuNPs/Mo C MXene MB CM + EM 2.2 × 10

Ti N MXene Rh6G CM ∼10

Ti C MB CM ∼10

Ti C  MXene MB CM 2.9 × 10

V C  and V C Rh6G CM ∼10

AuNPs/TiC Chlorpromazine CM + EM ∼10

TiVC Rh6G CM 3.3 ×
10

Nb C, Mo C, Ti C, V C, Ti C , Mo TiC , and
Ti CN Rh6G CM -

2D MOFs/COFs

Co-MOFs Rh6G CM -

AuNPs/COF-paper PAHs CM + EM 12 to 194

2.1. Graphene SERS (GERS) Substrates

Graphene is a single sheet of sp -bonded carbon atoms in a hexagonal honeycomb lattice. It is the well-known and most

explored two-dimensional allotrope of carbon with unusual electronic, optical properties, and high theoretical surface area

. The free π-electron, rich in graphene, can make π-interaction with other systems and accumulate on its surface.

Consequently, the charge-transfer between the graphene substrate and the adsorbed molecules is enhanced to observe

the SERS signal augmentation . This phenomenon has been exploited in graphene-enhanced Raman scattering

(GERS) for a wide range of applications, including materials development , energy  and biomedicine .
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2.2. Nitrides SERS Substrates

The lone-pair electrons in nitrides have an advantage while using them as SERS substrates. A hexagonal lattice made up

of boron and nitrogen atoms makes up the equivalent of graphene, known as hexagonal boron nitride (h-BN). Boron

nitride possesses a dipole-coupled Raman amplification mechanism, according to a recent investigation . Highly

sensitive, label-free, and non-destructive biomolecule detection is achieved using h-BN nanostructures . However, their

wider band gap (~6 eV) requires high excitation energy for a conventional CM signal enhancement, which is not suitable

for biological molecules .

Carbon nitrides are other important 2DNS for Raman signal amplification. Redemann et al. discovered in 1940 that

graphitic carbon nitride (g-C N ) possesses a graphite-like van der Waals layered structure . Despite having good

physicochemical stability, the poor signal enhancement from pristine g-C N  has hindered its use as an independent

SERS substrate for sensing applications. However, chemical and structural (e.g., induced disorders to the heptazine

chain) modifications may help improve the enhancement factor.

Few compound nitride thin films have also been reported as SERS substrates due to their resonant plasmonic

characteristics. For example, Shaoli et.al. have prepared titanium nitride (TiN), aluminium nitride (AlN) and titanium-

aluminium nitride (TiAlN) thin film SERS substrates with 95% higher signal strength compared to bare glass substrate .

A highly stable niobium nitride thin film with good uniformity has been prepared by reduction nitridation that enhances the

Raman signal of Rh6G by 4 × 10  factor .

2.3. Black Phosphorous (BP) SERS Substrates

Bulk BP was first synthesized in 1914, however, an atomically thin BP 2DNS is realized just recently . Compared to red

and white phosphorus, BP is the most stable form of elemental phosphorus . The 2D zig-zag structure of BP sheets

consists of phosphorus atoms with three covalently bonded nearest neighbours, while the sheets are bound together by

weak van der Waals forces. These layers can be easily exfoliated into 2D BP nanosheets, since the multi-level quantum

chemical calculations indicate an exfoliation energy of −151 meV per atom . These wrinkly sheets of honeycomb lattice

have armchair and zigzag forms, as in graphene. The layer-dependent band gap, from 0.3 (bulk) to 2.0 eV, of BP allows

the use of a wide range of excitation light in the UV, visible and NIR ranges for SERS analysis . Interestingly, Lin et al.

reported an anisotropic SERS substrate using few-layered BP and ReS , which exhibited polarization-dependent signal

enhancement . Therefore, BP nanosheets have recently received great attention for a wide range of applications,

particularly in biomedicine, photothermal therapy, photodynamic therapy, drug administration, 3D printing, bio-imaging,

and theranostics .

2.4. MXenes SERS Substrates

Transition metal carbides, nitrides or carbonitrides make a new class of 2D material, known as MXenes. They typically

have a layered structure with (n + 1) layers of M connected by n layers of X in the pattern [MX] -M, where M is an early

transition metal (such as Sc, Ti, Zr, Hf, V, Nb, Ta, Cr or Mo), and X is either carbon or nitrogen. A general formula for these

compounds is M X  (n = 1–3) . Since its first discovery (Ti C ) in 2011, MXenes have attracted immense attention

in a variety of applications, including energy, environmental and healthcare sectors. The high electrical conductivity of

highly metallic MXenes, having unique electronic and optical properties and intense LSPR effect in the visible or near-

infrared range, makes them a promising SERS substrate . Here, both EM and CM contribute to boosting the Raman

signal . Their flexibility and hydrophilic nature make functionalization or tagging with Raman reporters, easy.

2.5. Transition Metal Dichalcogenide (TMD) SERS Substrates

Compounds with the generalised formula MX , where M is a transition metal and X is a chalcogen, such as S, Se or Te,

make up the family of layered materials known as “transition metal dichalcogenides”. Strong intralayer bonding and weak

interlayer binding enable the exfoliation of these van der Waals solids into 2D nanosheets . A layer of transition metal

sandwiched between two saturated chalcogen layers makes these less reactive 2D TMD layers. The confinement of

charge carriers in two dimensions in TMDs dramatically alters their characteristics for a variety of applications .

These atomically flat sheets enable effective charge transfer between the probe molecules and substrates through weak

contacts, such as π–π* interactions, and make them suitable for chemical Raman signal enhancement . These

TMDs are particularly interesting since they facilitate attachment of probed molecules to induce the CM effect .
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2.6. Metal Oxide SERS Substrates

Most semiconductors exhibit weak SERS signals due to their large band gaps and lack of surface plasmon resonance.

Oxygen incorporation in semiconductors increases the Raman enhancement factor as good as 10  times, probably due to

the enhanced charge-transfer from the semiconductor band edges to the adsorbed molecules . Metal oxide

semiconductors, such as titanium oxide (TiO ), tungsten oxide (WoOx) and molybdenum oxide (MoOx), were recently

tested as SERS substrates . The surface polarisation effect due to the oxygen defect states boosts the Raman signals

in these substrates . For instance, few-layered MoO  nanosheets act as a sensitive SERS substrate, which enhances

the Raman signal up to 2.28 × 10  times and makes it capable of detecting 2 × 10  M of an Rh6G molecule . Similarly,

ultrathin, chemical vapour-deposited MoO  nanosheets show enhancement of the Raman signal up to 2.1 × 10  and

possess excellent reusability and uniformity . In both cases, it has been found that the EF further increased by

decreasing the thickness of the MoO  nanosheets.

2.7. 2D MOFs/COFs SERS Substrates

Metal-Organic Frameworks (MOFs) are crystalline porous materials consisting of metal ions or cluster nodes linked by

organic ligands such as carboxylate ligands and other negatively charged ligands . MOFs show excellent SERS

performance that is generally attributed to the charge transfer enhancement mechanism . Several studies have been

carried out to deploy MOFs as SERS substrates. For the first time, Yu et al. reported the Raman signal enhancement of

Methyl Orange adsorbed on Matériaux Institut Lavoisier (MIL)-type MOFs . Later, several other MOFs, including ZIF-

67, Co-TCPP MOFs and Co-MOF-74 were employed directly as SERS substrates, which shows an EF of about 10  for an

Rh6G molecule . Covalent Organic Frameworks (COFs) are ordered structures built up from organic building blocks via

covalent bonds . The use of COFs as SERS substrate is still in its infancy, while MOFs gained more popularity

because of the plasmonic hybrids. Two-dimensional allotropes of these MOFs and COFs are attracting increasing

research attention due to their ultrathin morphology, which offers a high surface-to-volume atom ratio . Their high

surface area with molecular structure facilitating a π–π* interaction is a critical advantage for their application in SERS

substrates.
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