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Agent-based models (ABMs) are one of the most effective and successful methods for analyzing real-world complex

systems by investigating how modeling interactions on the individual level (i.e., micro-level) leads to the understanding of

emergent phenomena on the system level (i.e., macro-level). ABMs represent an interdisciplinary approach to examining

complex systems, and the heterogeneous background of ABM users demands comprehensive, easy-to-use, and efficient

environments to develop ABM simulations. Many tools, frameworks, and libraries exist, each with its characteristics and

objectives.
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1. Introduction

Simulation models are one of the most effective and successful methods for studying real-world phenomena . The term

model refers to an abstract and simplified representation of the object of study that only considers the aspects relevant to

the investigation; the concept of simulation indicates a model’s manifestation realized through software for reproducing its

dynamics and providing analyzable results. Among simulation models, agent-based models (ABMs) are one of the most

adopted techniques for representing reality using a bottom-up approach . Starting from a simple independent entity

called an agent, the modeler can shape the global behavior of a complex system. An agent is an autonomous,

independent entity that acts within an environment and interacts with it as well as with other agents, according to a set of

rules the modeler defines. The combination of these interactions creates a reproduction of the reality under investigation

that the modeler can evaluate to extract valuable data and meaningful information from its emergent behaviors. The

resulting model will exhibit patterns, structures, and behaviors that were not explicitly programmed but arise through

agents’ interactions . For these reasons, ABMs turn out to be a valuable tool for studying, explaining, and predicting

complex phenomena, supporting researchers in investigating how the macroscopic behavior of a system depends on the

micro-level properties, constraints, and rules .

ABMs are extremely powerful for studying problems centered on an individual’s interactions with other individuals or the

surrounding environment . This intrinsic characteristic makes ABMs particularly suited to being applied in diverse

research fields. Nowadays, ABMs are widely used by researchers in various disciplines, allowing them to test and assess

new theories and observe and notice mechanisms never considered before. Applications domains for ABMs include social

science , economics , climate change , epidemiology , transportation and logistics , and many others

. The widespread use of ABMs in these various application fields created the need for tools to easily and quickly

develop simulations without requiring significant coding skills. Several ABM tools and platforms have been introduced to

overcome this requirement by abstracting the complexity of the simulation implementation, allowing modelers to focus on

the reality under investigation rather than the coding component.

2. Agent-Based Models and Simulations

2.1. ABM

Although no single formal definition of ABM exists in literature, it can easily identify some key components that ABMs

share: agents, environment, and rules . Agents model the living population, the environment determines the setting

where the agents act, and the rules define the potential agent-to-agent and agent-to-environment interactions .

The main aspect of an agent is its ability to act autonomously in response to the surrounding environment while making

decisions to achieve its internal goals. The modeler must define this decision-making process and compose the agent’s

behavior, which determines how the agent relates to other agents and environmental factors . The agent’s behavior

includes simple actions such as moving and communicating, but also more complex operations allowing the population to

evolve. Each agent maintains its attributes and the information acquired during the simulation within its state, which may
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vary during its life cycle. Agents live and act within an environment defining how agents can move and are connected to

other agents. An environment has a well-defined topology defined by fields such as spatial grids, continuous spaces, and

networks. When the simulation environment must reproduce real-world places, ABMs can exploit Geographic Information

System (GIS) data to replicate existing locations like buildings or towns . All other information related to fields and

other non-active objects is included in the environment state. The collection of all agents’ and environment’s states

represents the simulation state, which holds all the information about the model delineating its status at a specific time of

the simulation.

The modeler must be able to identify, model, and code agents, environment, and behavioral rules to realize an ABM.

2.2. ABM Tool

The effectiveness of ABMs collides with the difficulty of developing a model for researchers with low expertise in computer

science. Therefore, the ABM community made a considerable effort to provide standardized software platforms to design,

build, and execute ABMs. ABM tools take away many of the complexities of the model implementation, allowing the user

to focus on the simulation outcomes rather than the development process . ABM tools usually come in the form of

frameworks and libraries, providing developers with (i) a framework consisting of a set of standard concepts for designing

and describing a model and (ii) a library for implementing the framework, containing tools for the execution and the

analysis of the simulation .

Over the years, numerous ABM platforms have been developed with different objectives and targets. The first discriminant

factor is identifiable in the platform’s purpose. A tool can be either general or special-purpose . In the former case,

this characteristic denotes the user can use the ABM platform to model any system of interest. In the latter case, the term

special purpose implies that the system is oriented to a specific domain, thus including functionalities to address peculiar

situations of a given research field. A further differentiation concerns the main development objective of the tool, usually

identifiable in better ease of use or improved efficiency. Some ABM platforms emphasize easy-to-use interfaces with a

reasonable learning curve that allows non-experienced programmers to produce models quickly . The drawback of

this approach is low scalability since graphical tools and domain-specific programming languages are not focused on

performance. Several ABM toolkits for mainstream programming languages also exist. In this case, they offer high-

performance capabilities but require technical skills to use them appropriately .

 

2.3. Desiderata of an ABM Tool

Researchers use ABMs to investigate and analyze complex phenomena to understand how each component and the

interaction with other elements affect their emerging behavior . Conducting this kind of experiment often demands

building elaborated models in terms of the number of agents and the parameters regulating their interactions. The need

for implementing and running such models implies the first two fundamentals desiderata of an ABM tool: efficiency and

ease of use . These two aspects are heavily influenced by the design of the ABM platform and its

programming model and are often two conflicting objectives. Some ABM tools expose their functionalities via a GUI

(Graphical User Interface) to enhance user experience and grant high ease of use while limiting the achievable model

complexity by preventing the user from personalizing and/or adding more complex dynamics. Conversely, frameworks and

libraries based on standard programming languages give room for developing complex ABM by offering generic facilities.

As a downside, these tools demand adequate technical knowledge, which may result in a higher perceived difficulty ,

usually mitigated via proper documentation, examples, and tutorials .

Developing an ABM means defining different common patterns involving agents’ behavior, environment, and interactions.

ABM tools should provide ready-to-use methods and interface covering those patterns, allowing the modeler to easily and

quickly implement standard actions such as movement and communication, agents’ lifecycle and internal state

management, environments creation using grids, continuous spaces, and networks, and interaction with the environment

. Defining a realistic simulation field is a critical feature to accommodate since the simulation environment may

provide a rich set of information influencing the agents’ behavior. As 80% of the data have a spatial/geographical nature or

a geographical component, the ability to work with Geographic Information Systems (GIS) data becomes a fundamental

requirement for any ABM tool. GIS-based systems use multiple spatial data models for representing and storing

information about phenomena with spatial location and extent 

Other desiderata relating to the analysis of simulations include facilities for creating a graphical model visualization, tools

for statistical and non-statistical analysis, real-time monitoring, and data visualization . Among tools for
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statistical analysis, random number generation assumes tremendous importance since ABMs usually include stochastic

processes , i.e., processes influenced by a specific random component causing the simulation results to be

volatile. Researchers need to handle this stochasticity through random number generators that enable them to reliably

reproduce a model’s behavior and investigate how random distributions affect it . The intrinsic stochastic nature of

most ABMs also affects the reproducibility of such models. In this context, the automated validation process becomes a

critical step in ABM development as simulations must be run several times and their results aggregated .

As the last desideratum, it includes model exploration and optimization capabilities since modelers need to explore the

model’s parameter space experimenting with how the simulation behaves when given parameters vary .

3. ABM Tools

ActressMAS  is an agent-based framework written in .NET with the primary objective of being simple to learn and easy

to use. ActressMAS is designed to allow the user to focus on the model logic rather than learning the framework,

enhancing its accessibility at the expense of performance. According to its developers, ActressMAS should be used for

applications that do not require fast execution speed or do not include a considerable number of agents.

AgentPy  is an open-source Python library for developing and analyzing ABMs integrated with IPython and Jupyter

Notebooks, a web-based interactive development environment. AgentPy is designed for scientific applications and

provides features for model exploration, numeric experiments, and advanced data analysis. The library offers

functionalities to easily create models and their visualization that can be embedded within Jupyter notebooks. Moreover,

AgentPy allows the modeler to run simulations in a parallel environment without writing parallel code.

Agents.jl  is a recent framework for agent-based simulations for implementing, running, and visualizing models

exploiting the Julia programming language. This framework is mainly centered on granting efficiency and ease of use by

exposing methods that allow the user to develop models with few lines of code. Agents.jl is available as a Julia library and

is easily usable with the plethora of analytical tools of the Julia ecosystem. It offers the most common ABM-related

features, including different environments, support for GIS data, and model exploration capabilities. Agents.jl also

supports parallel and distributed computing to empower simulation execution.

Care HPS  is a C++ tool for modeling and executing ABMs on high-performance architectures while hiding the

complexity of parallel and distributed programming. The tool abstracts the modeler from crucial and tricky tasks such as

agent distribution, load balancing, and synchronization. Still, Care HPS remains easily extensible by expert developers.

Cormas (Common-Pool Resources and Multi-Agent Systems)  is a simulation platform based on the VisualWorks

programming environment and the Smalltalk language. This platform is mainly dedicated to non-computer scientists and

offers facilities to build, design, and analyze ABMs; however, it exchanges this ease of use with limited efficiency and

scalability. Cormas editor allows the user to define agent behaviors through activity diagrams without including

sophisticated features to keep its interface as simple as possible.

CppyABM  is a library for ABM development that combines the efficiency of C++ with the availability of Python libraries

and exploits CMake to be platform-free. CppyABM offers all functionalities in both languages, enabling users to choose

their preferred programming language. CppyABM relies on third-party packages to provide additional functionality while

remaining a lightweight library. Other Python or C++ libraries can be installed separately and integrated into CppyABM.

EcoLab  is a framework for developing ABMs in C++ and executing them using TCL (Tool Command Language). This

tool provides a GUI through the Tk toolkit and supports parallel and distributed processing by exposing utilities to manage

communication. The user has to handle synchronization and partitioning manually.

Evoplex  is a platform for developing ABM based on C++, using CMake scripts to facilitate compilation and setup, thus

making it cross-platform. Evoplex adopts a fully modular approach that separates the core library from the GUI and

visualization tools. The APIs exposed by the core library allow the user to develop the model. At the same time, additional

components are available to improve ease of use with an interactive GUI and a web visualization tool.

FLAME (FLexible Agent Modeling Environment)  is an agent-based modeling system for creating models runnable on

most computing systems, ranging from laptops to HPC supercomputers. FLAME provides a formal framework for creating

models based on the XXML language, a dialect of XML, that it uses to generate the source code for the simulation in C

automatically. The FLAME engine automatically generates parallel code without any effort by the modeler by adopting a

new programming language easy to understand.
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FLAME GPU  is an extended version of the FLAME framework to write ABMs for Graphics Processing Units (GPUs)

using the FLAME standard formal XXML language. Thanks to FLAME GPU, the user does not need to explicitly

understand GPU programming languages or optimization strategies since the API available uses the FLAME template to

generate the simulation program in CUDA for target GPU devices. Visualization of the simulation is available even for a

massive agent population without suffering performance loss.

GAMA (Gis & Agent-based Modelling Architecture)  is an agent-oriented generic modeling and simulation platform.

GAMA grants high ease of use by providing a simple agent-based programming language called GAML that offers a

simple formalism to describe all the characteristics of the entities of an ABM. Moreover, the platform can manage

simulations with hundreds of thousands of agents with good performance. The modular architecture, separating each

aspect of the model into a specific component, and the facilities provided makes GAMA an accessible tool for non-expert

developers with minimum learning requirements. This characteristic is enhanced by the full integration of GAMA with the

Eclipse IDE, which provides convenient features such as auto-compilation, auto-completion, and the use of templates.

Finally, the platform supports the integration of external modules to introduce additional functionalities, such as GAMAR

, that enable the analysis of simulation results with R.

Insight Maker  is a graphical modeling and simulation tool focused on accessibility and availability of features rather

than performance. This tool is a web application accessible through a standard web browser and includes features

specific to a web environment, like user management and model searching and sharing. The main advantage of Insight

Maker resides in its VPL (Visual Programming Language), which offers access to all its functionalities, including tools for

data analysis and model exploration and validation. The simulator also includes API to build models and analyze their

results programmatically.

JADE (Java Agent Development Framework)  is an industry-driven Java FIPA-compliant framework aiming to simplify

the implementation of multi-agent systems. Thanks to its features, this tool has established itself as one of the most

popular platforms in academic and industrial communities . JADE provides a powerful and useful GUI enabling the user

to control and configure the simulation during its execution and also supports debugging and development tasks.

Moreover, this tool is designed to work on distributed systems abstracting most of the inherent complexities to the

modeler. The core characteristics of JADE make the tool highly scalable, robust, easy to learn, and compatible with most

Java-based platforms. Moreover, its popularity grants high user support, with complete documentation and many tutorials

and examples available.

JAS-mine (Java Agent-based Simulation library—Modelling In a Networked Environment)  is a Java-based toolkit for

discrete-event simulations designed to aid ABM development. Specifically, this platform aims to speed up model

development, facilitate model documentation, and foster model testing and sharing. The core capabilities of JAS-mine

reside in integrating I/O communication functionalities in the form of embedded relational database management systems

tools and automatic CSV table creation. The database explorer included in the platform enables the user to inspect the

database through Structured Query Language (SQL) style commands.

krABMaga  is a fast, reliable, discrete-event multi-agent simulation toolkit based on the Rust language for developing

ABMs. Designed to be a ready-to-use tool for the ABM community, krABMaga embraces the architectural concepts of the

well-adopted MASON simulation library to provide modelers with a familiar programming environment and decrease the

learning curve of the framework. However, krABMaga re-engineered some aspects of the MASON architecture to exploit

Rust’s peculiarities and programming model. This framework comprises all functionalities required for developing and

executing a model, including a visualization component and a convenient UI. Additional functionalities relate to running

model exploration jobs on parallel, distributed, and cloud architectures.

MaDKit (Multi-agent Development Kit)  is a lightweight Java library for designing and simulating agent systems. The

tool follows an organization-centered rather than an agent-centered approach based on the AGR (Agent/Group/Role)

model. MaDKit provides several functionalities via APIs, including agents’ lifecycle management and distribution, being

mainly designed to be used by users with some programming knowledge.

MASON  is a discrete-event simulation toolkit written in Java for designing, executing, and visualizing ABMs. MASON

provides functionalities and API supporting the most common needs of a modeler, including common agents’ behavior,

environment creation, and scheduling management. One of the main advantages of MASON is its snapshot system

enabling the user to stop and save a simulation and resume it in another machine thanks to the compatibility provided by

the Java Virtual Machine. Moreover, thanks to the existing extensions, additional features are available, including GIS

data with GeoMASON , model exploration with ECJ , or the possibility of executing a simulation on distributed
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systems and Cloud Computing with DistributedMASON . Further, MASON is well-suited to computationally intensive

models or long-running simulations.

MASS (Multi-Agent Spatial Simulation)  is a multi-agent and spatial simulation library designed to address the need for

parallel ABMs. The architecture is based on the coordinator–worker approach, where the coordinator process spawns

workers at different computing nodes to run parallel simulations. MASS automatically manages agent execution and

migration as well as the simulation space through several APIs, which facilitate the model development (if the user has

some basic knowledge of Java).

Mesa  is a Python-based ABM framework providing built-in core components to easily create, visualize, and analyze

simulations. Mesa is one of the most used and actively supported ABM libraries, which exploits Python’s popularity to

provide ease of use and accessibility. One of the main advantages of Mesa is its extensibility allowing users to develop

and share their components through an open-source ecosystem. This approach created a rich community providing

extensions for any need, including the possibility to exploit a multi-processor system, support for GIS data, and advanced

analysis.

NetLogo  is an agent-based modeling environment implemented in Java and Scala, and it is considered the standard

platform for developing ABMs. The importance and popularity of NetLogo rose to prominence thanks to its community,

which is continuously providing extensions such as GIS data usage, 3D visualization, and integration with other

languages, such as Python with PyNetLogo  or Pylogo , or R with RNetLogo . Other relevant extensions worth to

be mentioned are HubNet  for creating participatory simulations and BehaviorSpace  for providing parameter-

sweeping capabilities using distributed and parallel techniques. NetLogo allows modelers to develop their models through

a simple-to-use dedicated modeling language while offering a VPL to create and edit components to realize any

simulation. However, its accessibility leads to significant limitations regarding model complexity.

Pandora  is an ABM framework for large-scale distributed simulation providing two identical programming interfaces

exposing the same functionalities in two different programming languages. pyPandora allows non-expert developers to

develop models using Python quickly. C++ Pandora offers a more efficient interface in C++ to implement complex models,

including the automatic generation of parallel and distributed code. Pandora includes Cassandra, a GUI tool with

functionalities to design and analyze a single model execution or to set up a model exploration process. This tool can run

large-scale ABMs, and deal with thousands of agents with complex behavior.

Repast (REcursive Porous Agent Simulation Toolkit)  is a family of agent-based modeling and simulation platforms

available in several programming languages. Repast Simphony  is a Java-based modeling system that provides

automated methods to perform all the common tasks required in a simulation and supports several crucial additional

functionalities. The Simphony platform is based on a modular architecture adopting a plugin system that enables adding a

wide range of external tools. Any other Repast version implements the core features of Repast Simphony. Repast4Py 

is a Python-based framework that includes functionalities to develop distributed ABMs.

RepastHPC (Repast for High-Performance Computing)  is another member of the Repast suite; specifically, it is a C++-

based modeling system designed for running on large computing clusters and supercomputers. This toolkit enables the

execution of massive simulations containing hundreds of thousands of agents of very complex behavior whose execution

requires high computational power. Although some built-in functions are available for developing a model, RepastHPC still

requires users to have good programming experience since they have to manage different aspects of the parallel

execution.

3. Conclusions

ABMs are an effective technique for studying complex systems via a bottom-up approach as, through ABM simulations,

researchers from different fields can investigate phenomena that are too difficult to understand using traditional methods.

ABMs represent an interdisciplinary approach to examining complex systems, and the heterogeneous background of ABM

users demands comprehensive, easy-to-use, and efficient environments to develop ABM simulations. Over the years,

many tools, frameworks, and libraries have been developed, each with its characteristics and objectives.

There is no perfect ABM platform, but modelers must choose the right tool primarily based on their technical skills and

application requirements (e.g., elevated computational loads, GIS data management, visualization). Specifically, modelers

must evaluate their confidence in coding in a specific programming language, the amount of advanced and non-advanced

functionalities required, and the scale and complexity of the models. Based on these parameters, it is possible to identify

the tool that best suits the user’s needs, finding the right compromise between ease of use and efficiency. Given their
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inherent distributed nature, ABMs lend themselves well to analyzing phenomena from the ever more attractive distributed

computing domains such as federated learning  and blockchain systems .
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