

Rubi idaei fructus as a Source of Antioxidants

Subjects: **Plant Sciences**

Contributor: Mirosława Chwil, Renata Matraszek-Gawron, Mikołaj Kostryco, Monika Różańska-Boczula

Given the increased incidence of lifestyle diseases, scientists are searching for natural bioactive compounds with a broad spectrum of activity but no side effects to be used in the production of pharmaceutical and cosmetic formulations. *Rubi idaei fructus* is a promising source of antioxidants that can serve as substitutes for synthetic agents in prophylaxis and adjuvant therapies.

raspberry

Rubi idaei fructus

bioactive compounds

fatty acids

amino acid

flavonoids

1. Oxidative Stress and Its Effects and Defense Mechanisms against ROS

Oxidative stress plays an important role in the etiology and course of lifestyle diseases. It is associated with a disturbed balance between oxidants and antioxidants having an ability to detoxify the highly reactive by-products of metabolic transformations [1][2]. Reactive oxygen (ROS) and reactive nitrogen (RNS) species include oxygen free radicals and non-radical derivatives [3][4]. The most important sites of ROS generation in a plant cell include the chloroplasts, peroxisomes, and mitochondria. Due to the large amounts of ROS formed in the chloroplasts, proteins involved in photosynthetic electron transport are often oxidized [4][5]. At moderate concentrations, ROS and RNS mediate the regulation of cell signaling transduction processes, and their excessive production activates nucleases, damages (deoxyribonucleic acid) DNA, and results in cytotoxic activity [6][7][8]. Oxidative stress damages lipids and oxidizes cell membranes, changes the structure and modifies the functions of proteins due to the oxidation of amino acid residues, and damages carbohydrates by breaking the glycosidic bonds of polysaccharides [9][10]. It reduces adenosine triphosphate (ATP) production via the inhibition of oxidative phosphorylation, leading to the oxidation of low-molecular compounds [11][12], and induces the formation of free radical oxidation products, resulting in apoptotic cell death [13][14].

The enzymatic system protecting cells from ROS includes superoxide dismutase, which catalyzes O_2^{--} dismutation, and catalase participating in H_2O_2 disproportionation [15]. Enzymes associated with the glutathione-ascorbic pathway, i.e., ascorbate peroxidase, dehydroascorbate reductase, and glutathione reductase, are involved in ROS detoxification as well [16][17]. In the non-enzymatic system, the small-molecular antioxidant compounds acting as scavengers are represented by membrane-active lipophilic carotenoids, flavonoids, and vitamins C and B₆ [18][19]. Vitamin C scavenges 1O_2 , OH^* , O_2^{--} superoxide radicals, and $ONOOH$; acts a cofactor for ROS detoxifying enzymes; and regulates cell metabolism systems [17][20].

2. Rubi idaei fructus as a Source of Antioxidants

Recently, interest in berries has significantly increased together with the increased consumption associated with their high nutritional value and phytotherapeutic properties. *Rubi idaei fructus* is a promising source of antioxidants that can serve as substitutes for synthetic agents in prophylaxis and adjuvant therapies [21][22]. *R. idaeus* is an important species for consumption, processing, medicinal, and cosmetic purposes. The majority of commercial cultivars derive from red raspberry [23]. On a global scale, the cultivation area of this species is expanding [24][25][26]. New fruit storage technologies contribute to the maintenance of an unchanged chemical profile, i.e., the content of anthocyanins, vitamins, and tannins. These phytochemicals exhibit antioxidant [27], anti-inflammatory [28], antibacterial [29], immunomodulatory [30], and anticancer activity [31].

3. Use of *R. idaeus* Fruits

Due to their rich chemical composition and pro-health (e.g., antioxidant) activity, *R. idaeus* fruits are an important component of diets [32], functional foods [33], nutraceuticals [34], supplements [35], medicines [36], and natural cosmetics [37]. The bioactive compounds contained in raspberry fruit exert a wide range of beneficial phytotherapeutic effects [38]. The fruits are recommended as part of the prophylaxis of metabolic diseases, e.g., cardiovascular diseases [24], diabetes [39], obesity [40], and Alzheimer's disease [41]. The anti-inflammatory activity of *Rubi idaei fructus* is associated with the inhibitory effect of its compounds on lipoxygenase and cyclooxygenase-2 activity [28]. Additionally, extracts from red raspberries can be used in the prophylaxis and treatment of *Helicobacter pylori* infection [42]. A combination of prebiotics and active chemical compounds from *Rubi idaei fructus* is a natural antimicrobial agent to be used in the production of functional foods and in other branches of the food industry [43]. Raspberry fruit extracts may serve as chemotherapeutic agents, as they have been found to inhibit the migration and invasion of nasopharyngeal cancer cells, the expression of MMP-2, and the ERK1/2 signaling pathway [44]. *Rubi idaei fructus* fruits are characterized by high antioxidant activity [45][46][47]. These raw materials contain enzymatic and non-enzymatic antioxidants inducing the action of enzymes [28][46][48].

Biologically active phenolic compounds are mainly regarded as the most abundant antioxidants in the diet [49]. The total content of phenolic compounds determined with the Folin–Ciocalteau method confirms that raspberry fruits are a good source of antioxidant secondary metabolites [46][50][51]. The methods used, i.e., the ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, 2,2'-azinobis-(3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS) radical, and OH[·] scavenging assays, confirm the high free radical scavenging activity of secondary metabolites from *Rubi idaei fructus* raw material [28][29][47][50][51][52][53][54][55]. This indicates that raspberry fruits can be used as a valuable nutritional component in the adjuvant therapy of oxidative stress-related diseases.

4. Selected Methods for the Determination of Oxidative Activity

The comparative analysis of antioxidant properties is based on several oxidation–reduction reactions taking place between an oxidant (a reagent appropriate for a given method, e.g., ABTS cation radical, DPPH, OH radical, FRAP reagent, and Folin) and a reducer, i.e., the sum of antioxidant compounds present in the raw material, e.g., *Rubus idaei fructus*. The content of antioxidants present in a sample is determined based on the decrease or increase in the absorbance of the reaction mixture measured spectrophotometrically at a specific wavelength. The Folin–Ciocalteau procedure is based on the use of Folin's reagent, i.e., a mixture of sodium tungstate (Na_2WO_4), sodium molybdate (Na_2MoO_4), lithium sulphate (Li_2SO_4), bromine water, and concentrated hydrochloric acid and phosphoric acid [56]. In the ABTS and DPPH methods, 2,2'-azinobis(3ethylbenzothiazoline-6-sulfonate) and 2,2-diphenyl-1-picrylhydrazyl reagents, respectively, react with antioxidants contained in the raw material and cause discoloration of cation radicals. The degree of discoloration is proportional to the content of the antioxidant compound and is monitored spectrophotometrically at 734 nm and 515 nm wavelengths [57][58]. The FRAP method involves the reaction of the iron-2,4,6-tripyridyl-S-triazine complex obtained from the reaction of 2,4,6-tripyridyl-S-triazine (TPTZ) with iron chloride (FeCl_3) in acetic buffer (pH 3.5) with antioxidants present in the raw material. The complex becomes intensely blue, and its concentration is monitored using a spectrophotometer at a wavelength of 593 nm. The principle of the OH^\bullet radical-based method is to produce the radical in the Fenton reaction in a medium with iron sulfate, hydrogen peroxide, and sodium salicylate, measured at a wavelength of 562 nm [59]. These methods facilitate a comparative analysis of the antioxidant capacity of selected raw materials, e.g., *R. idaeus* fruits and juice.

References

1. Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. *Nat. Rev. Drug. Discov.* 2021, 20, 689–709.
2. Kiran, T.R.; Otlu, O.; Karabulut, A.B. Oxidative stress and antioxidants in health and disease. *J. Lab. Med.* 2023, 47, 1–11.
3. Ushio-Fukai, M.; Ash, D.; Nagarkoti, S.; Belin de Chantemerle, E.J.; Fulton, D.J.R.; Fukai, T. Interplay between reactive oxygen/reactive nitrogen species and metabolism in vascular biology and disease. *Antioxid. Redox. Signal.* 2021, 34, 1319–1354.
4. Martemucci, G.; Costagliola, C.; Mariano, M.; D'Andrea, L.; Napolitano, P.; D'Alessandro, A.G. Free radical properties, source and targets, antioxidant consumption and health. *Oxygen* 2022, 2, 48–78.
5. Di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Role of ROS and RNS sources in physiological and pathological conditions. *Oxid. Med. Cell Longev.* 2016, 2016, e1245049.
6. Mansoor, S.; Ali Wani, O.A.; Lone, J.K.; Manhas, S.; Kour, N.; Alam, P.; Ahmad, A.; Ahmad, P. Reactive oxygen species in plants: From source to sink. *Antioxidants* 2022, 11, 225.

7. Mandal, M.; Sarkar, M.; Khan, A.; Biswas, M.; Masi, A.; Rakwal, R.; Agraval, G.K.; Srivastava, A.; Sarkar, A. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) in plants—maintenance of structural individuality and functional blend. *Adv. Redox Res.* 2022, 5, 100039.
8. Tripathi, D.; Nam, A.; Oldenburg, D.J.; Bendich, A.J. Reactive oxygen species, antioxidant agents, and DNA damage in developing maize mitochondria and plastids. *Front. Plant Sci.* 2020, 11, e596.
9. Wang, B.; Wang, Y.; Zhang, J.; Hu, C.; Jiang, J.; Li, Y.; Peng, Z. ROS-induced lipid peroxidation modulates cell death outcome: Mechanisms behind apoptosis, autophagy, and ferroptosis. *Arch. Toxicol.* 2023, 97, 1439–1451.
10. Duan, J.; Kasper, D.L. Oxidative depolymerization of polysaccharides by reactive oxygen/nitrogen species. *Glycobiology* 2011, 21, 401–409.
11. Xu, Q.; Huff, L.P.; Fujii, M.; Griendl, K.K. Redox regulation of the actin cytoskeleton and its role in the vascular system. *Free Radic. Biol. Med.* 2017, 109, 84–107.
12. Madreiter-Sokolowski, C.T.; Thomas, C.; Ristow, M. Interrelation between ROS and Ca²⁺ in aging and age-related diseases. *Redox Biol.* 2020, 36, e101678.
13. Kang, S.W. Role of reactive oxygen species in cell death pathways. *Hanyang Med. Rev.* 2013, 33, 77–82.
14. Liu, T.; Sun, L.; Zhang, Y.; Wang, Y.; Zheng, J. Imbalanced GSH/ROS and sequential cell death. *J. Biochem. Mol. Toxicol.* 2022, 36, e22942.
15. Irato, P.; Santovito, G. 2021. Enzymatic and non-enzymatic molecules with antioxidant function. *Antioxidants* 2021, 10, e579.
16. Loudari, A.; Latique, S.; Mayane, A.; Colinet, G.; Oukarroum, A. Polyphosphate fertilizer impacts the enzymatic and non-enzymatic antioxidant capacity of wheat plants grown under salinity. *Sci. Rep.* 2023, 13, e11212.
17. Machado, J.; Vasconcelos, M.W.; Soares, C.; Fidalgo, F.; Heuvelink, E.; Carvalho, S.M.P. Enzymatic and non-enzymatic antioxidant responses of young tomato plants (cv. Micro-Tom) to single and combined mild nitrogen and water deficit: Not the sum of the parts. *Antioxidants* 2023, 12, 375.
18. Moussa, Z.; Judeh, Z.M.A.; Ahmed, S.A. Nonenzymatic exogenous and endogenous antioxidants. In *Free Radical Medicine and Biology*, 1st ed.; Das, K., Das, S., Shivanagouda Biradar, M., Bobbarala, V., Subba Tata, S., Eds.; IntechOpen: London, UK, 2020; pp. 95–116.
19. Abdulfatah, H.F. Non-enzymatic antioxidants in stressed plants: A review. *J. Anbar Univ. Pure Sci.* 2022, 16, 25–37.

20. Ashraf, M.A.; Riaz, M.; Arif, M.S.; Rasheed, R.; Iqbal, M.; Hussain, I.; Mubarik, M.S. The role of non-enzymatic antioxidants in improving abiotic stress tolerance in plants. In *Plant Tolerance to Environmental Stress: Role of Phytoprotectants*, 1st ed.; Hasanuzzaman, M., Fujita, M., Oku, H., Islam, M.T., Eds.; CRC Press: Boca Raton, FL, USA, 2019; Volume 4, pp. 129–143.

21. Piazza, S.; Fumagalli, M.; Khalilpour, S.; Martinelli, G.; Magnavacca, A.; Dell'Agli, M.; Sangiovanni, E. A review of the potential benefits of plants producing berries in skin disorders. *Antioxidants* 2020, 9, 542.

22. Cosme, F.; Pinto, T.; Aires, A.; Morais, M.C.; Bacelar, E.; Anjos, R.; Ferreira-Cardoso, J.; Oliveira, I.; Vilela, A.; Gonçalves, B. Red fruits composition and their health benefits—A review. *Foods* 2022, 11, e644.

23. Davik, J.; Røen, D.; Lysøe, E.; Buti, M.; Rossman, S.; Alsheikh, M.; Aiden, E.L.; Dudchenko, O.; Sargent, D.J. A chromosome-level genome sequence assembly of the red raspberry (*Rubus idaeus* L.). *PLoS ONE* 2022, 17, e0265096.

24. Piña-Contreras, N.; Martínez-Moreno, A.G.; Ramírez-Anaya, J.D.P.; Espinoza-Gallardo, A.C.; Valdés, E.H.M. Raspberry (*Rubus idaeus* L.), a promising alternative in the treatment of hyperglycemia and dyslipidemias. *J. Med. Food.* 2022, 25, 121–129.

25. Bojkovska, K.; Joshevska, F.; Tosheva, E.; Momirceski, J. Global raspberries market trends and their impact on the Macedonian raspberries market. *Int. J. Res. Rev.* 2021, 8, 362–369.

26. Frías-Moreno, M.N.; Parra-Quezada, R.Á.; Ruíz-Carrizales, J.; González-Aguilar, G.A.; Sepulveda, D.; Molina-Corral, F.J.; Olivas, G.I. Quality, bioactive compounds and antioxidant capacity of raspberries cultivated in northern Mexico. *Int. J. Food Prop.* 2021, 24, 603–614.

27. Veljković, B.; Jakovljević, V.; Stanković, M.; Dajić-Stevanović, Z. Phytochemical and antioxidant properties of fresh fruits and some traditional products of wild grown raspberry (*Rubus idaeus* L.). *Not. Bot. Horti Agrobot. Cluj-Napoca* 2019, 47, 565–573.

28. Lopez-Corona, A.V.; Valencia-Espinosa, I.; González-Sánchez, F.A.; Sánchez-López, A.L.; Garcia-Amezquita, L.E.; Garcia-Varela, R. Antioxidant, anti-inflammatory and cytotoxic activity of phenolic compound family extracted from raspberries (*Rubus idaeus*): A general review. *Antioxidants* 2022, 11, 1192.

29. Marić, B.; Abramović, B.; Ilić, N.; Bodroža-Solarov, M.; Pavlić, B.; Oczkowski, M.; Wilczak, J.; Četojević-Simin, D.; Šarić, L.; Teslić, N. UHPLC-Triple-TOF-MS characterization, antioxidant, antimicrobial and antiproliferative activity of raspberry (*Rubus idaeus* L.) seed extracts. *Foods* 2022, 12, 161.

30. Su, X.; Zhao, M.; Fu, X.; Ma, X.; Xu, W.; Hu, S. Immunomodulatory activity of purified polysaccharides from *Rubus chingii* Hu fruits in lymphocytes and its molecular mechanisms. *J. Funct. Foods* 2021, 87, 104785.

31. Veljković, B.; Djordjevic, N.; Dolicanin, Z.; Licina, B.; Topuzovic, M.; Stankovic, M.; Zlatić, N.; Dajic-Stevanovic, Z. Antioxidant and anticancer properties of leaf and fruit extracts of the wild raspberry (*Rubus idaeus* L.). *Not. Bot. Horti Agrobot. Cluj Napoca* 2019, 47, 359–367.

32. Durán-Soria, S.; Pott, D.M.; Will, F.; Mesa-Marín, J.; Lewandowski, M.; Celejewska, K.; Masny, A.; Zurawicz, E.; Jennings, N.; Sønsteby, A.; et al. Exploring genotype-by-environment interactions of chemical composition of raspberry by using a metabolomics approach. *Metabolites* 2021, 11, e490.

33. Zhanova, E.V. Fruit of raspberry *Rubus idaeus* L. as a source of functional ingredients (review). *Food Process. Techniq. Technol.* 2018, 48, 5–14.

34. Piccolo, E.L.; Martínez García, L.; Landi, M.; Guidi, L.; Massai, R.; Remorini, D. Influences of postharvest storage and processing techniques on antioxidant and nutraceutical properties of *Rubus idaeus* L.: A mini-review. *Horticulturae* 2020, 6, 105.

35. Carey, A.N.; Pintea, G.I.; Van Leuven, S.; Gildawie, K.R.; Squicciarini, L.; Fine, E.; Rovnak, A.; Harrington, M. Red raspberry (*Rubus idaeus*) supplementation mitigates the effects of a high-fat diet on brain and behavior in mice. *Nutr. Neurosci.* 2021, 24, 406–416.

36. Meng, Q.; Manghwar, H.; Hu, W. Study on supergenus *Rubus* L.: Edible, medicinal, and phylogenetic characterization. *Plants* 2022, 11, 1211.

37. Gledovic, A.; Janosevic, L.A.; Nikolic, I.; Tasic-Kostov, M.; Antic-Stankovic, J.; Krstonosic, V.; Randjelovic, D.; Bozic, D.; Ilic, D.; Tamburic, S.; et al. Polyglycerol ester-based low energy nanoemulsions with red raspberry seed oil and fruit extracts: Formulation development toward effective In Vitro/In Vivo bioperformance. *Nanomaterials* 2021, 11, 217.

38. Gao, W.; Wang, Y.S.; Hwang, E.; Lin, P.; Bae, J.; Seo, S.A.; Yan, Z.; Yi, T.H. *Rubus idaeus* L. (red raspberry) blocks UVB-induced MMP production and promotes type I procollagen synthesis via inhibition of MAPK/AP-1, NF-κB and stimulation of TGF-β/Smad, Nrf2 in normal human dermal fibroblasts. *J. Photochem. Photobiol. B Biol.* 2018, 185, 241–253.

39. Derrick, S.A.; Kristo, A.S.; Reaves, S.K.; Sikalidis, A.K. Effects of dietary red raspberry consumption on pre-diabetes and type 2 diabetes mellitus parameters. *Int. J. Environ. Res. Public Health* 2021, 18, 9364.

40. Xian, Y.; Fan, R.; Shao, J.; Toney, A.M.; Chung, S.; Ramer-Tait, A.E. Polyphenolic fractions isolated from red raspberry whole fruit, pulp, and seed differentially alter the gut microbiota of mice with diet-induced obesity. *J. Func. Foods* 2021, 76, 104288.

41. Mohamed, H.E.; Abo-ELmatty, D.M.; Mesbah, N.M.; Saleh, S.M.; Ali, A.M.A.; Sakr, A.T. Raspberry ketone preserved cholinergic activity and antioxidant defense in obesity induced Alzheimer disease in rats. *Biomed. Pharmacother.* 2018, 107, 1166–1174.

42. Goodman, C.; Lyon, K.N.; Scotto, A.; Smith, C.; Sebrell, T.A.; Gentry, A.B.; Bala, G.; Stoner, G.D.; Bimczok, D. A high-throughput metabolic microarray assay reveals antibacterial effects of black and red raspberries and blackberries against *Helicobacter pylori* infection. *Antibiotics* 2021, 10, 845.

43. Bauza-Kaszewska, J.; Zary-Sikorska, E.; Gugolek, A.; Ligocka, A.; Kosmala, M.; Karlinska, E.; Fotschki, B.; Juskiewicz, J. Synergistic antimicrobial effect of raspberry (*Rubus idaeus* L., Rosaceae) preparations and probiotic bacteria on enteric pathogens. *Pol. J. Food Nutr. Sci.* 2021, 71, 51–59.

44. Hsin, C.H.; Huang, C.C.; Chen, P.N.; Hsieh, Y.S.; Yang, S.F.; Ho, Y.T.; Lin, C.W. *Rubus idaeus* inhibits migration and invasion of human nasopharyngeal carcinoma cells by suppression of MMP-2 through modulation of the ERK1/2 pathway. *Am. J. Chin. Med.* 2017, 45, 1557–1572.

45. Grabek-Lejko, D.; Wojtowicz, K. Comparison of antibacterial and antioxidant properties of fruits and leaves of blackberry (*Rubus plicatus*) and raspberry (*Rubus idaeus*). *J. Microbiol. Biotechnol. Food Sci.* 2014, 3, 514–518.

46. Chwil, M.; Matraszek-Gawron, R.; Kostryco, M. Rubi idaei fructus as a source of bioactive chemical compounds with an important role in human health and comparison of the antioxidant potential of fruits and juice of three repeat-fruited *Rubus idaeus* L. cultivars. *Metabolites* 2023, 13, 1124.

47. Huang, X.; Wu, Y.; Zhang, S.; Yang, H.; Wu, W.; Lyu, L.; Li, W. Changes in antioxidant substances and antioxidant enzyme activities in raspberry fruits at different developmental stages. *Sci. Hortic.* 2023, 321, 112314.

48. Shoukat, S.; Mahmudiono, T.; Al-Shawi, S.G.; Abdelbasset, W.K.; Yasin, G.; Shichiyakh, R.A.; Iswanto, A.H.; Kadhim, A.J.; Kadhim, M.M.; Al-Rekaby, H.Q. Determination of the antioxidant and mineral contents of raspberry varieties. *Food Sci. Technol. Campinas* 2022, 42, 118521.

49. Renai, L.; Scordo, C.V.A.; Chiuminatto, U.; Ułaszewska, M.; Giordani, E.; Petrucci, W.A.; Tozzi, F.; Nin, S.; Del Bubba, M. Liquid chromatographic quadrupole time-of-flight mass spectrometric untargeted profiling of (poly) phenolic compounds in *Rubus idaeus* L. and *Rubus occidentalis* L. fruits and their comparative evaluation. *Antioxidants* 2021, 10, 704.

50. Mîrza, A. Antioxidant activity of leaf and fruit extracts from *Rubus fruticosus*, *Rubus idaeus* and *Rubus loganobaccus* growing in the conditions of the Republic of Moldova. *Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev.* 2021, 21, 363–372.

51. Velarde-Salcedo, A.J.; De León-Rodríguez, A.; Calva-Cruz, O.J.; Balderas-Hernández, V.E.; De Anda Torres, S.; Barba-de la Rosa, A.P. Extraction of bioactive compounds from *Rubus idaeus* waste by maceration and supercritical fluids extraction: The recovery of high added-value compounds. *Int. J. Food Sci. Technol.* 2023, 58, 5838–5854.

52. Szymanowska, U.; Baraniak, B.; Bogucka-Kocka, A. Antioxidant, anti-inflammatory, and postulated cytotoxic activity of phenolic and anthocyanin-rich fractions from 'Polana' raspberry (*Rubus idaeus* L.) fruit and juice—In vitro study. *Molecules* 2018, 23, 1812.

53. Schulz, M.; Chim, J.F. Nutritional and bioactive value of *Rubus* berries. *Food Biosci.* 2019, 31, 100438.

54. Balawejder, M.; Matłok, N.; Piechowiak, T.; Szostek, M.; Kapusta, I.; Niemiec, M.; Komorowska, M.; Wróbel, M.; Mudryk, K.; Szeląg-Sikora, A.; et al. The modification of substrate in the soilless cultivation of raspberries (*Rubus idaeus* L.) as a factor stimulating the biosynthesis of selected bioactive compounds in fruits. *Molecules* 2022, 28, 118.

55. Vieira, T.M.; Alves, V.D.; Moldão Martins, M. Application of an eco-friendly antifungal active package to extend the shelf life of fresh red raspberry (*Rubus idaeus* L. cv. 'Kweli'). *Foods* 2022, 11, 1805.

56. Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. *J. Agric. Food Chem.* 2005, 53, 4290–4302.

57. Yu, T.W.; Ong, C.N. Lag-time measurement of antioxidant capacity using myoglobin and (2,2'-Azino-bis(ethylbenzthiazoline-6-sulfonic acid)): Rationale application and limitation. *Anal. Biochem.* 1999, 275, 217–223.

58. Moyer, R.A.; Hummer, K.E.; Finn, C.E.; Frei, B.; Wrolstad, R.E. Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: *Vaccinium*, *Rubus*, and *Ribes*. *J. Agric. Food Chem.* 2002, 50, 519–525.

59. Gawlik-Dziki, U.; Świeca, M.; Dziki, D. Comparison of phenolic acids profile and antioxidant potential of six varieties of spelt (*Triticum spelta* L.). *J. Agric Food Chem.* 2012, 60, 4603–4612.

Retrieved from <https://encyclopedia.pub/entry/history/show/122450>