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Prostate cancer is the second most leading and prevalent malignancy around the world, following lung cancer.

Prostate cancer is characterized by the uncontrolled growth of cells in the prostate gland. Prostate cancer morbidity

and mortality have grown drastically, and intensive prostate cancer care is unlikely to produce adequate outcomes.

The synthetic drugs for the treatment of prostate cancer in clinical practice face several challenges. Quercetin is a

natural flavonoid found in fruits and vegetables. Apart from its beneficial effects, its plays a key role as an anti-

cancer agent. Quercetin has shown anticancer potential, both alone and in combination. 
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1. Quercetin in Oncology

In recent decades, the scientific community has uncovered the enormous potential role for natural compounds in

the therapy and management of terrible diseases such as cancer. Despite the availability of a wide range of natural

therapeutic agents, the creation of a definitive treatment for cancer is still pending. Therefore, it is important to

understand the relationships between natural molecules and their respective cellular targets to devise an efficient

cancer treatment strategy. This would involve numerous intracellular targets, which include apoptosis, cell cycle,

detoxification, replication of antioxidants, and angiogenesis. The scope of the synergistic studies available strongly

reinforces the use of quercetin as a medication for chemoprevention .

Apoptosis is characterized by specific cellular events such as blebbing, failure of cell adhesion, cytoplasmic

expansion, fragmentation of DNA, and caspase activation via external and internal pathways. Research indicates

that quercetin can induce apoptosis through the mitochondrial pathway involving activation of caspase-3 and 9,

accompanied by liberation of cytochrome C and poly-ADP-ribose polymerase cleavage . This induction of

apoptosis by quercetin through mitochondrial pathways and the caspase cascade has been documented in various

cancer cell lines including MCF-7 cells of breast cancer, HK1 cells of nasopharyngeal carcinoma, HL60 cells of

leukemia, and SCC-9 cells of oral squamous cell carcinoma . Induction of apoptosis via cellular signaling

protein modulation, upregulation of Bax (Bcl2 associated X protein), Cox-2, and downregulation of Bcl-2 proteins is

also triggered by quercetin .

Normally, cyclin and cyclin dependent kinases regulate the cell cycle. Conversely, cyclin dependent kinase inhibiter

regulates cyclin dependent kinases . Quercetin induces S phase cell cycle arrest and subsequently leads to

the inhibition of DNA synthesis in SCC-9 cells . During the S-phase of MCF-7 breast cancer cells, quercetin

induces cell arrest, which leads to downregulation of cyclin dependent kinases-2 and p53, and p57 upregulation in
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a dose-time dependent manner . By inhibiting cell cycle progression, quercetin prevents the proliferation of

ovarian cancer cells and promotes cell apoptosis . Quercetin anticancer potential evaluated in multiple cancers

is briefly shown in Table 1.

Table 1. Effect of quercetin on multiple cancers.

 

Cancer Type Cell Line Observed Effects References

Breast cancer MCF-7 cells Apoptosis induction, cell cycle arrest

Nasopharyngeal
carcinoma

HK-1 cells Cell cycle arrest and apoptosis induction

Leukemia HL-60 cells Apoptosis induction, detoxification

oral squamous cell
carcinoma

SCC-9 cells
Necrosis and apoptosis induction, cell cycle arrest

during S-phase

Ovarian cancer SKOV-3 cells
Promotes cell apoptosis, prevents cancer cells

proliferation

Lung cancer A549 cells inhibition of CYP1A2 activity

Gastric cancer GC 1401
Suppression of gastric cancer cell growth,

apoptosis modulation

Colorectal cancer HT-229
Apoptosis promotion, provoke cell cycle arrest,

proliferation inhibition

Oral cancer SAS cells
Repression of invasion, migration and cell viability,

decrease tumor rate and enhanced apoptosis

Liver cancer
SMMC7721,
QGY7701

Antitumor effect via apoptosis induction

Thyroid cancer B-CPAP, K1 Promote apoptosis, reduce cell proliferation.

Pancreatic cancer MIA PaCa-2
Apoptosis induction, reduced cell proliferation,

apoptosis induction

Evidence indicates that quercetin deregulates multiple CYP enzyme isoforms in tumor cells . In vitro studies

have demonstrated quercetin induced inhibition of CYP1A2 activity in human lung carcinoma A549 cells, HepG2

cells, and human hepatocytes . Apart from CYP enzyme modulation, quercetin follows the mechanism of Nrf2

(nuclear erythroid factor 2-cognate factor 2) mediated enzyme induction, contributing to its anti-cancer potential.

When phase II enzymes like heme oxygenase-1, UDP-glucuronosyl, and glutathione S transferases pose any

carcinogens, quercetin causes their suppression. The genes of these enzymes involve antioxidant replication
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components that are rigorously regulated by nuclear erythroid factor 2-cognate factor 2. This, as a consequence, is

correlated with another protein known as the Kelch-like ECH-associated protein-1, a Nrf2 repressor, and further

reinforces its deterioration via the ubiquitin-dependent proteasome pathway .

In the treatment of ARE-mediated inducer cells, quercetin facilitates the detachment of the Nrf2-Keap1 complex,

resulting in the translocation of Nrf2 to the nucleus, where it composes heterodimers with other transcription

factors, binds to ARE, and activates phase II enzyme gene transcription . The molecular target pathway is

shown in Figure 4.

Figure 4. Quercetin targeting via phase II enzyme pathway mediated through Nrf-2. When the cells are

unstimulated under stress conditions, Keap-1 isolates Nrf-2 and exposes it to cul-e dependent ubiquitin ligase. This

enzyme leads to the proteasomal cleavage of Nrf-2. In the meantime, quercetin degrades the Nrf-2 keap-1

complex and shifts the Nrf2 to the nucleus. Inside the nucleus, Nrf-2 binds to ARE, resulting in the production of

phase II enzymes via Nrf-2 associated expression. NrF-2, nuclear factor erythroid 2 related factor-2; Ub, ubiquitin;

ARE, anti-oxidant response element. Human colorectal adenocarcinoma cells and duodenal adenocarcinoma

HuTu 80 cells were further identified as receiving a quercetin triggered boost in phase II oxidative stress

(detoxification enzymes). Additionally, the time-dependent influence of quercetin on the transcriptional regulation of

Nrf2 and its increased mRNA and protein expression was consistently observed in HepG2 and malignant

mesothelioma cells .

2. Quercetin and Prostate Cancer

Recently, morbidity and mortality of prostate cancer have risen, and systematic cures for prostate are unable to

produce sufficient results. Quercetin is a naturally occurring flavonoid compound that has gained immense
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attention and focus because of its effectiveness against cancer. Both in vitro and in vivo studies have confirmed

that quercetin effectively inhibits prostate cancer via different pathways.

2.1. Quercetin and Cell Death

Despite the dismal situation in prostate cancer care, the findings of the anticancer effects of quercetin are

promising, having been used in a variety of human prostate cancer trials with beneficial effects. During the

progression of prostate cancer, quercetin suppresses the epithelial-to-mesenchymal transition process, promoting

apoptosis via deactivation of the PI3K/Akt signaling pathway . Additionally, quercetin has been shown to

decrease the ratio of Bcl-xL to Bcl-xS and in contrast, maximize the efflux of Bax to the mitochondrial matrix in

human prostate cancer cells . Apart from this, quercetin promotes apoptosis of cancer cells by downregulation of

heat shock protein-90 levels. Quercetin depletion of heat shock protein-90 results in reduced cell viability, inhibition

of surrogate markers, mediated apoptosis, and activation of caspases .

A research study on the correlation between quercetin and prostate cancer indicates that quercetin reduces the

viability of androgen-independent prostate cancer cells by regulating the expression of system components of

insulin-like growth factors (IGF), signal transduction, and inducing apoptosis, which could be very beneficial for the

treatment of androgen-independent prostate cancer . There is no study to discuss the role of endoplasmic

reticulum stress in quercetin-induced apoptosis in prostate cancer cells. Multiple pieces of evidence indicate

several potential signaling pathways for quercetin in apoptosis. In this regard, Liu et al. demonstrated that quercetin

decreases the expression of Bcl-2 protein and activates the caspase cascade via mitochondrial and endoplasmic

reticulum stress, subsequently leading to apoptosis in prostate cancer cells .

Quercetin downregulated the Notch/AKT/mTOR, a fundamental signaling pathway in tumor progression, which

leads significantly to apoptosis of U937 leukemia cells . Targeting extrinsic domains, quercetin has been found

to boost tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mediated apoptosis in DU-145 cells

(human prostate cancer cell line) via overexpression of death receptor-5 (DR5) . Downregulation of survivin

through histone (H-3 regulated) deacetylation and AKT dephosphorylation in prostate cancer-3 and DU-145 cell

line also leads to apoptosis by quercetin due to its anti-prostate cancer potential . Apart from apoptosis

induced by the caspase cascade, quercetin also triggers other apoptosis pathways, which are schematically shown

in Figure 5. Apoptosis induction by quercetin, which could be the significant parameter for its anti-prostate cancer

effectiveness, has been extensively explored in numerous types of prostate cancer cell and is attracting ever more

attention.
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Figure 5. Quercetin apoptotic mechanism via death ligand and mitochondrial membrane. Following the intrinsic

pathway, quercetin causes massive release of Cyt-c from the mitochondrial intramembranous space and induces

apoptosomes. Furthermore, via blebbing, DNA fragmentation, and cytoskeleton contraction, it paves the way to

apoptosis. On the other hand, through the extrinsic pathway, quercetin initiates caspase-8, which leads to

apoptosis. A substantial increase in JNK and cdc cyclin B while decreasing heat shock proteins by quercetin also

promotes therapy of prostate cancer. Bcl-xL, B-cell lymphoma extra-large; Bcl-2, B-cell lymphoma-2; Cyt-c,

cytochrome c; JNK, c-jun N terminal kinase; ERK, extracellular signal regulated kinase; PARP, poly ADP-ribose

polymerase; PI3K, phosphoinositide 3 kinase; Akt, serine/threonine specific protein kinase.

2.2. Quercetin and Metastasis

The epithelial–mesenchymal transition (EMT) is a flexible transition in the progression of tumors, during which

cancer cells undergo drastic changes to develop highly invasive properties. Transforming growth factor-β (TGF-β)

is an epithelial–mesenchymal transition inducer within epithelial cells, required for the development of the invasive

carcinoma phenotype. Transforming growth factor-β plays a critical role in prostate cancer metastasis and

tumorigenesis, with mutations in the Wnt signaling pathway being linked to a further variety of cancer types.

Quercetin interferes with the Wnt signaling pathway, leading to inhibition of migration and invasion .

Urokinase plasminogen activator (uPA) is a serine protease that is associated with the progression of prostate

cancer, especially the invasion and metastasis stages. In the prostate cell proliferation stage, urokinase

plasminogen activator is regulated by uPA and transactivation of the epidermal growth factor receptor. Cells of

prostate cancer (PC-3) are highly invasive when expressing the uPA and uPAR genes. Quercetin downregulates

mRNA expressions for uPA, uPAR, and EGF. In addition, quercetin also inhibits β-catenin, NF-ceB, and even

proliferative signaling molecules such as p-EGF-R, N-Ras, Raf-1, c. Fos c. Jun, and p-c. Jun protein expressions of
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the cell survival factor. This whole process leads to the inhibition of invasion and migration phenomena, resulting in

inhibition of prostate cancer metastasis . Quercetin also blocks angiogenesis and metastasis by upregulating

thrombospondin-1 to suppress in vitro and in vivo growth of PC-3 cells in human prostate cancer .

Angiogenesis is a vital step in the invasion and progression of cancer as it helps the expanding tumor to acquire

oxygen and nutrients. At non-toxic concentrations, quercetin significantly inhibits the protrusion of micro vessels

and shows substantial inhibition of the proliferation, migration, invasion, and tube forming of endothelial cells, which

are essential events in the angiogenesis process. The findings of an associated study revealed that quercetin

inhibits angiogenesis and cell growth targeting the VEGF-R2 regulated AKT/mTOR/P70S6K signaling pathway,

leading to inhibition of prostate cancer metastasis . Another target for quercetin is miR-21, where it significantly

suppresses the proliferation and metastasis of prostate cancer cells and decreases the expression of multiple

miRNA associated with prostate tumors, particularly miR-21. Such an inhibition of the miR-21 signaling pathway

results in the prevention of prostate cancer metastasis . The comparative detail of quercetin on multiple prostate

cancer cell lines, along with the observed effects, are shown in Table 2.

Table 2. Comparative details of quercetin on multiple cell lines of prostate cancer.

Molecular
Mechanism Signaling Pathway Cell Lines Observed Effects References

Apoptosis PI3K/Akt signaling pathway
PC-3 and its

xenograft tumor
Suppression of epithelial to

mesenchymal transition

 
Caspase activation,
regulation of Bcl-2,

PC-3

Decrease the ratio of Bcl-
xL to Bcl-xS and in

contrast maximize the
efflux of Bax to the

mitochondrial matrix

 
Downregulation of heat

shock protein-90
PC-3, LNCaP,

DU-145

Reduced cell viability,
inhibition of surrogate

markers, mediated
apoptosis and activation of

caspases

 
Insulin-like growth factors
(IGF), signal transduction
both internal and external

PC-3
Reduces the viability of
androgen-independent
prostate cancer cells

 
Notch/AKT/mTOR,

caspase-3, and caspase-9
DU-145

Boost tumor necrosis
factor-related apoptosis-
inducing ligand (TRAIL),
sensitization cancer cells

to apoptosis

Metastasis Wnt signaling pathway, PC-3
Inhibition of migration and

invasion
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Molecular
Mechanism Signaling Pathway Cell Lines Observed Effects References

 
Inhibition of β-catenin, NF-

κB, p-EGF-R, N-Ras, Raf-1,
c. Fos c. Jun and p-c. Jun

PC-3
Inhibition of migration and
invasion of prostate cancer

cell lines

 Thrombospondin-1 PC-3
Suppress in vitro and in

vivo growth of PC-3 cells in
human prostate cancer

Angiogenesis
and

proliferation

VEGF regulated
AKT/mTOR/P70S6K

HUVECs
(Human

umbilical vein
endothelial
cells), PC-3

Inhibition of angiogenesis
and tumor growth

 VEGF/PI3k/Akt LNCap, PC-3
Synergistic inhibition of cell
invasion and proliferation

 
capase-3/7, nuclear β-

catenin, and TCF-1/LEF
LNCap, PC-3

Inhibition of invasion and
proliferation

 Bcl-2/Bax LNCap, PC-3
Antiproliferative effect,

growing the Stage G2/M

 PI3K/Akt
LAPC-4 and

LNCaP

Inhibition of cell migration,
antiprostate cancer

potency at lower dose,
antiproliferative effect

Quercetin in combination with metformin targets the VEGF/PI3k/Akt signaling pathway, which synergistically

inhibits cell invasion and proliferation in prostate cancer cell lines . In addition, quercetin in combination with

epigallocatechin gallate inhibits the invasion and progression of prostate cancer stem cells via activation of X-linked

inhibitor of apoptosis protein (XIAP) and survivin, leading to its metastasis inhibition potential in prostate cancer .

With regard to this synergy, in PC-3—the cell lines of human prostate cancer—quercetin and 2-methoxyestradiol

display antiproliferative and proapoptotic activity by growing the Stage G2/M of the cell population and decreasing

Bcl-2/Bax. Thus, promoting the G2/M stage leads to the anti-metastatic potential of prostate cancer . At low

physiological doses, the combination of arctigenin and quercetin targeting related pathways (androgen receptor

and PI3K/Akt) offers a novel protocol for accelerated chemoprevention in prostate cancer .

2.3. Quercetin in Reversing Chemoresistance

Chemotherapy is indeed an indispensable therapy for prostate cancer. The development of chemoresistance,

however, is a widespread and crucial issue that requires urgent remedies to be dealt with.
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Advanced drug studies have shown that quercetin serves as a potential anti-cancer agent in several types of

cancer by regulating multiple pathways. However, current therapies are limited by resistance, which might be

reversed by quercetin. In this regard, doxorubicin induced resistance was successfully recovered via quercetin in a

research study. A cell line-PC3/R of prostate cancer with acquired doxorubicin resistance was identified. In

comparison with normal PC3 cells, a strong drug-resistance to doxorubicin and significant activation of the

phosphoinositide 3-kinase/protein kinase-B (PI3K/AKT) pathway was shown in PC3/R cells. Doxorubicin

combination therapy with quercetin greatly facilitated the apoptosis induced by doxorubicin in PC3/R cells via the

mitochondrial/reaction oxygen species pathway. A major upregulation of tyrosine-protein kinase-met was observed

in PC3/R cells as opposed to normal PC3 cells. Furthermore, c-met mediated expression rescued quercetin-

promoted apoptosis in doxorubicin treated PC3/R cells . This clearly indicates that quercetin can reverse the

resistance of prostate cancer cells to doxorubicin by downregulating the expression of c-met. This might provide a

potential strategy to reverse prostate cancer chemoresistance.

Docetaxel is a first line therapeutic drug that is used in the treatment of prostate cancer metastasis. Unfortunately,

the advent of resistance reduces its effectiveness and restricts its benefits to survival. In prostate cancer cells and

xenograft models, quercetin can reverse docetaxel resistance on proliferation, colony formation, migration,

invasion, and apoptosis. Combination therapy of quercetin with docetaxel can sufficiently inhibit the PI3K/Akt

pathway and promote apoptosis. Subclones susceptible to docetaxel and prone subclones have been treated with

quercetin, which showed that docetaxel-resistant subclones had greater androgen receptor and PI3K/Akt pathway

activation, more remarkable phenotypes of mesenchymal and stem-like cells, and more expression of P-gp than

that of parental cells. All these transformations were interestingly reversed by quercetin . This offers in-depth

evidence for the clinical use of quercetin in docetaxel-resistant prostate cancer.

The effect of cancer treatment and ATP-dependent drug efflux pumps may be significantly affected by multidrug

resistance to chemotherapy, P-glycoprotein, and midkine (MK) contribute to the resistance of different

chemotherapeutic agents. Z—polypeptide 1 is one of the midkine receptors and, in PI3K and MAPK pathways, has

been found to be synergistically active in midkine-mediated cell migration. Consequently, modulation of the PI3K

and MAPK signaling pathways by quercetin can cause amplification of gene expression associated with

endothelial–mesenchymal transition. Thus, quercetin modulation of the endothelial–mesenchymal transition and

drug resistance genes might contribute to the inhibition of CD44 /CD133  proliferation and migration . In

summary, these findings show that MK siRNA coupled with quercetin can inhibit the therapeutic resistance of

CD44 /CD133  cells. Treatment with quercetin combined with the midkine knockdown strategy could effectively

target and facilitate removal of CD44 /CD133  cells, thereby preventing chemoresistance.

The splice variant AR-V7 is implicated in resistance not only to enzalutamide, but also to abiraterone and other

traditional therapeutics. Clinical evidence indicates that resistance toward the next-generation antiandrogen,

enzalutamide, can be largely induced by alternative androgen receptor splicing to establish constitutively active

splice variants (AR-V7). Recent studies indicate that fusing factors such as hnRNPA1 promote the production of

AR-V7 and thus contribute to the resistance of enzalutamide in cells of prostate cancer. Quercetin decreases

hnRNPA1, and subsequently AR-V7 expression. Quercetin suppression of AR-V7 desensitizes enzalutamide-
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resistant prostate cancer cells to enzalutamide therapy. Altogether, the underlying mechanism involves

downregulation of hnRNPA1 expression, downregulation of AR-V7 expression, antagonizes the signaling pathway

of androgen receptors, and desensitizes enzalutamide-resistant prostate cancer cells to in vivo treatment with

enzalutamide in mouse xenografts . These findings indicate that blocking the alternative splicing of the androgen

receptor can have major consequences in overwhelming resistance to antiandrogen therapy of the next generation.

Metastatic or locally induced prostate cancer is usually managed with androgen deprivation therapy. Prostate

cancer initially reacts to the medication, and then its response begins to revert, gaining tolerance to androgen

deprivation and developing toward castrate-resistant prostate cancer-an incurable form. Research using transgenic

mouse models shows that modulation of the Wnt/β-Catenin signaling pathway in the prostate cancer is cancerous,

allowing for castration-resistant growth of prostate cancer, inducing an epithelial-to-mesenchymal transformation,

promoting differentiation of neuroendocrine and giving stem cell-like characteristics to prostate cancer cells .

These major Wnt/β-Catenin signaling functions in prostate cancer development emphasize the need to establish

drugs targeting this pathway for dealing with resistance to prostate cancer therapy.
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