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Prostate cancer is the second most leading and prevalent malignancy around the world, following lung cancer. Prostate

cancer is characterized by the uncontrolled growth of cells in the prostate gland. Prostate cancer morbidity and mortality

have grown drastically, and intensive prostate cancer care is unlikely to produce adequate outcomes. The synthetic drugs

for the treatment of prostate cancer in clinical practice face several challenges. Quercetin is a natural flavonoid found in

fruits and vegetables. Apart from its beneficial effects, its plays a key role as an anti-cancer agent. Quercetin has shown

anticancer potential, both alone and in combination. 
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1. Quercetin in Oncology

In recent decades, the scientific community has uncovered the enormous potential role for natural compounds in the

therapy and management of terrible diseases such as cancer. Despite the availability of a wide range of natural

therapeutic agents, the creation of a definitive treatment for cancer is still pending. Therefore, it is important to understand

the relationships between natural molecules and their respective cellular targets to devise an efficient cancer treatment

strategy. This would involve numerous intracellular targets, which include apoptosis, cell cycle, detoxification, replication of

antioxidants, and angiogenesis. The scope of the synergistic studies available strongly reinforces the use of quercetin as

a medication for chemoprevention .

Apoptosis is characterized by specific cellular events such as blebbing, failure of cell adhesion, cytoplasmic expansion,

fragmentation of DNA, and caspase activation via external and internal pathways. Research indicates that quercetin can

induce apoptosis through the mitochondrial pathway involving activation of caspase-3 and 9, accompanied by liberation of

cytochrome C and poly-ADP-ribose polymerase cleavage . This induction of apoptosis by quercetin through

mitochondrial pathways and the caspase cascade has been documented in various cancer cell lines including MCF-7

cells of breast cancer, HK1 cells of nasopharyngeal carcinoma, HL60 cells of leukemia, and SCC-9 cells of oral squamous

cell carcinoma . Induction of apoptosis via cellular signaling protein modulation, upregulation of Bax (Bcl2

associated X protein), Cox-2, and downregulation of Bcl-2 proteins is also triggered by quercetin .

Normally, cyclin and cyclin dependent kinases regulate the cell cycle. Conversely, cyclin dependent kinase inhibiter

regulates cyclin dependent kinases . Quercetin induces S phase cell cycle arrest and subsequently leads to the

inhibition of DNA synthesis in SCC-9 cells . During the S-phase of MCF-7 breast cancer cells, quercetin induces cell

arrest, which leads to downregulation of cyclin dependent kinases-2 and p53, and p57 upregulation in a dose-time

dependent manner . By inhibiting cell cycle progression, quercetin prevents the proliferation of ovarian cancer cells and

promotes cell apoptosis . Quercetin anticancer potential evaluated in multiple cancers is briefly shown in Table 1.

Table 1. Effect of quercetin on multiple cancers.

 

Cancer Type Cell Line Observed Effects References

Breast cancer MCF-7 cells Apoptosis induction, cell cycle arrest

Nasopharyngeal
carcinoma HK-1 cells Cell cycle arrest and apoptosis induction

Leukemia HL-60 cells Apoptosis induction, detoxification

oral squamous cell
carcinoma SCC-9 cells Necrosis and apoptosis induction, cell cycle arrest during S-

phase
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Cancer Type Cell Line Observed Effects References

Ovarian cancer SKOV-3 cells Promotes cell apoptosis, prevents cancer cells proliferation

Lung cancer A549 cells inhibition of CYP1A2 activity

Gastric cancer GC 1401 Suppression of gastric cancer cell growth, apoptosis
modulation

Colorectal cancer HT-229 Apoptosis promotion, provoke cell cycle arrest, proliferation
inhibition

Oral cancer SAS cells Repression of invasion, migration and cell viability, decrease
tumor rate and enhanced apoptosis

Liver cancer SMMC7721,
QGY7701 Antitumor effect via apoptosis induction

Thyroid cancer B-CPAP, K1 Promote apoptosis, reduce cell proliferation.

Pancreatic cancer MIA PaCa-2 Apoptosis induction, reduced cell proliferation, apoptosis
induction

Evidence indicates that quercetin deregulates multiple CYP enzyme isoforms in tumor cells . In vitro studies have

demonstrated quercetin induced inhibition of CYP1A2 activity in human lung carcinoma A549 cells, HepG2 cells, and

human hepatocytes . Apart from CYP enzyme modulation, quercetin follows the mechanism of Nrf2 (nuclear erythroid

factor 2-cognate factor 2) mediated enzyme induction, contributing to its anti-cancer potential. When phase II enzymes

like heme oxygenase-1, UDP-glucuronosyl, and glutathione S transferases pose any carcinogens, quercetin causes their

suppression. The genes of these enzymes involve antioxidant replication components that are rigorously regulated by

nuclear erythroid factor 2-cognate factor 2. This, as a consequence, is correlated with another protein known as the

Kelch-like ECH-associated protein-1, a Nrf2 repressor, and further reinforces its deterioration via the ubiquitin-dependent

proteasome pathway .

In the treatment of ARE-mediated inducer cells, quercetin facilitates the detachment of the Nrf2-Keap1 complex, resulting

in the translocation of Nrf2 to the nucleus, where it composes heterodimers with other transcription factors, binds to ARE,

and activates phase II enzyme gene transcription . The molecular target pathway is shown in Figure 4.

Figure 4. Quercetin targeting via phase II enzyme pathway mediated through Nrf-2. When the cells are unstimulated

under stress conditions, Keap-1 isolates Nrf-2 and exposes it to cul-e dependent ubiquitin ligase. This enzyme leads to

the proteasomal cleavage of Nrf-2. In the meantime, quercetin degrades the Nrf-2 keap-1 complex and shifts the Nrf2 to

the nucleus. Inside the nucleus, Nrf-2 binds to ARE, resulting in the production of phase II enzymes via Nrf-2 associated

expression. NrF-2, nuclear factor erythroid 2 related factor-2; Ub, ubiquitin; ARE, anti-oxidant response element. Human

colorectal adenocarcinoma cells and duodenal adenocarcinoma HuTu 80 cells were further identified as receiving a

quercetin triggered boost in phase II oxidative stress (detoxification enzymes). Additionally, the time-dependent influence

of quercetin on the transcriptional regulation of Nrf2 and its increased mRNA and protein expression was consistently

observed in HepG2 and malignant mesothelioma cells .
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2. Quercetin and Prostate Cancer

Recently, morbidity and mortality of prostate cancer have risen, and systematic cures for prostate are unable to produce

sufficient results. Quercetin is a naturally occurring flavonoid compound that has gained immense attention and focus

because of its effectiveness against cancer. Both in vitro and in vivo studies have confirmed that quercetin effectively

inhibits prostate cancer via different pathways.

2.1. Quercetin and Cell Death

Despite the dismal situation in prostate cancer care, the findings of the anticancer effects of quercetin are promising,

having been used in a variety of human prostate cancer trials with beneficial effects. During the progression of prostate

cancer, quercetin suppresses the epithelial-to-mesenchymal transition process, promoting apoptosis via deactivation of

the PI3K/Akt signaling pathway . Additionally, quercetin has been shown to decrease the ratio of Bcl-xL to Bcl-xS and in

contrast, maximize the efflux of Bax to the mitochondrial matrix in human prostate cancer cells . Apart from this,

quercetin promotes apoptosis of cancer cells by downregulation of heat shock protein-90 levels. Quercetin depletion of

heat shock protein-90 results in reduced cell viability, inhibition of surrogate markers, mediated apoptosis, and activation

of caspases .

A research study on the correlation between quercetin and prostate cancer indicates that quercetin reduces the viability of

androgen-independent prostate cancer cells by regulating the expression of system components of insulin-like growth

factors (IGF), signal transduction, and inducing apoptosis, which could be very beneficial for the treatment of androgen-

independent prostate cancer . There is no study to discuss the role of endoplasmic reticulum stress in quercetin-

induced apoptosis in prostate cancer cells. Multiple pieces of evidence indicate several potential signaling pathways for

quercetin in apoptosis. In this regard, Liu et al. demonstrated that quercetin decreases the expression of Bcl-2 protein and

activates the caspase cascade via mitochondrial and endoplasmic reticulum stress, subsequently leading to apoptosis in

prostate cancer cells .

Quercetin downregulated the Notch/AKT/mTOR, a fundamental signaling pathway in tumor progression, which leads

significantly to apoptosis of U937 leukemia cells . Targeting extrinsic domains, quercetin has been found to boost tumor

necrosis factor-related apoptosis-inducing ligand (TRAIL) mediated apoptosis in DU-145 cells (human prostate cancer cell

line) via overexpression of death receptor-5 (DR5) . Downregulation of survivin through histone (H-3 regulated)

deacetylation and AKT dephosphorylation in prostate cancer-3 and DU-145 cell line also leads to apoptosis by quercetin

due to its anti-prostate cancer potential . Apart from apoptosis induced by the caspase cascade, quercetin also

triggers other apoptosis pathways, which are schematically shown in Figure 5. Apoptosis induction by quercetin, which

could be the significant parameter for its anti-prostate cancer effectiveness, has been extensively explored in numerous

types of prostate cancer cell and is attracting ever more attention.

Figure 5. Quercetin apoptotic mechanism via death ligand and mitochondrial membrane. Following the intrinsic pathway,

quercetin causes massive release of Cyt-c from the mitochondrial intramembranous space and induces apoptosomes.

Furthermore, via blebbing, DNA fragmentation, and cytoskeleton contraction, it paves the way to apoptosis. On the other

hand, through the extrinsic pathway, quercetin initiates caspase-8, which leads to apoptosis. A substantial increase in JNK

and cdc cyclin B while decreasing heat shock proteins by quercetin also promotes therapy of prostate cancer. Bcl-xL, B-
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cell lymphoma extra-large; Bcl-2, B-cell lymphoma-2; Cyt-c, cytochrome c; JNK, c-jun N terminal kinase; ERK,

extracellular signal regulated kinase; PARP, poly ADP-ribose polymerase; PI3K, phosphoinositide 3 kinase; Akt,

serine/threonine specific protein kinase.

2.2. Quercetin and Metastasis

The epithelial–mesenchymal transition (EMT) is a flexible transition in the progression of tumors, during which cancer

cells undergo drastic changes to develop highly invasive properties. Transforming growth factor-β (TGF-β) is an

epithelial–mesenchymal transition inducer within epithelial cells, required for the development of the invasive carcinoma

phenotype. Transforming growth factor-β plays a critical role in prostate cancer metastasis and tumorigenesis, with

mutations in the Wnt signaling pathway being linked to a further variety of cancer types. Quercetin interferes with the Wnt

signaling pathway, leading to inhibition of migration and invasion .

Urokinase plasminogen activator (uPA) is a serine protease that is associated with the progression of prostate cancer,

especially the invasion and metastasis stages. In the prostate cell proliferation stage, urokinase plasminogen activator is

regulated by uPA and transactivation of the epidermal growth factor receptor. Cells of prostate cancer (PC-3) are highly

invasive when expressing the uPA and uPAR genes. Quercetin downregulates mRNA expressions for uPA, uPAR, and

EGF. In addition, quercetin also inhibits β-catenin, NF-ceB, and even proliferative signaling molecules such as p-EGF-R,

N-Ras, Raf-1, c. Fos c. Jun, and p-c. Jun protein expressions of the cell survival factor. This whole process leads to the

inhibition of invasion and migration phenomena, resulting in inhibition of prostate cancer metastasis . Quercetin also

blocks angiogenesis and metastasis by upregulating thrombospondin-1 to suppress in vitro and in vivo growth of PC-3

cells in human prostate cancer .

Angiogenesis is a vital step in the invasion and progression of cancer as it helps the expanding tumor to acquire oxygen

and nutrients. At non-toxic concentrations, quercetin significantly inhibits the protrusion of micro vessels and shows

substantial inhibition of the proliferation, migration, invasion, and tube forming of endothelial cells, which are essential

events in the angiogenesis process. The findings of an associated study revealed that quercetin inhibits angiogenesis and

cell growth targeting the VEGF-R2 regulated AKT/mTOR/P70S6K signaling pathway, leading to inhibition of prostate

cancer metastasis . Another target for quercetin is miR-21, where it significantly suppresses the proliferation and

metastasis of prostate cancer cells and decreases the expression of multiple miRNA associated with prostate tumors,

particularly miR-21. Such an inhibition of the miR-21 signaling pathway results in the prevention of prostate cancer

metastasis . The comparative detail of quercetin on multiple prostate cancer cell lines, along with the observed effects,

are shown in Table 2.

Table 2. Comparative details of quercetin on multiple cell lines of prostate cancer.

Molecular
Mechanism Signaling Pathway Cell Lines Observed Effects References

Apoptosis PI3K/Akt signaling pathway PC-3 and its
xenograft tumor

Suppression of epithelial to
mesenchymal transition

  Caspase activation, regulation
of Bcl-2, PC-3

Decrease the ratio of Bcl-xL to
Bcl-xS and in contrast maximize

the efflux of Bax to the
mitochondrial matrix

  Downregulation of heat shock
protein-90

PC-3, LNCaP, DU-
145

Reduced cell viability,
inhibition of surrogate markers,

mediated apoptosis and activation
of caspases

 
Insulin-like growth factors

(IGF), signal transduction both
internal and external

PC-3 Reduces the viability of androgen-
independent prostate cancer cells

  Notch/AKT/mTOR, caspase-3,
and caspase-9 DU-145

Boost tumor necrosis factor-
related apoptosis-inducing ligand
(TRAIL), sensitization cancer cells

to apoptosis

Metastasis Wnt signaling pathway, PC-3 Inhibition of migration and
invasion

 
Inhibition of β-catenin, NF-κB,
p-EGF-R, N-Ras, Raf-1, c. Fos

c. Jun and p-c. Jun
PC-3

Inhibition of migration and
invasion of prostate cancer cell

lines
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Molecular
Mechanism Signaling Pathway Cell Lines Observed Effects References

  Thrombospondin-1 PC-3
Suppress in vitro and in vivo

growth of PC-3 cells in human
prostate cancer

Angiogenesis
and proliferation

VEGF regulated
AKT/mTOR/P70S6K

HUVECs (Human
umbilical vein

endothelial cells),
PC-3

Inhibition of angiogenesis and
tumor growth

  VEGF/PI3k/Akt LNCap, PC-3 Synergistic inhibition of cell
invasion and proliferation

  capase-3/7, nuclear β-catenin,
and TCF-1/LEF LNCap, PC-3 Inhibition of invasion and

proliferation

  Bcl-2/Bax LNCap, PC-3 Antiproliferative effect, growing
the Stage G2/M

  PI3K/Akt LAPC-4 and LNCaP
Inhibition of cell migration,

antiprostate cancer potency at
lower dose, antiproliferative effect

Quercetin in combination with metformin targets the VEGF/PI3k/Akt signaling pathway, which synergistically inhibits cell

invasion and proliferation in prostate cancer cell lines . In addition, quercetin in combination with epigallocatechin

gallate inhibits the invasion and progression of prostate cancer stem cells via activation of X-linked inhibitor of apoptosis

protein (XIAP) and survivin, leading to its metastasis inhibition potential in prostate cancer . With regard to this synergy,

in PC-3—the cell lines of human prostate cancer—quercetin and 2-methoxyestradiol display antiproliferative and

proapoptotic activity by growing the Stage G2/M of the cell population and decreasing Bcl-2/Bax. Thus, promoting the

G2/M stage leads to the anti-metastatic potential of prostate cancer . At low physiological doses, the combination of

arctigenin and quercetin targeting related pathways (androgen receptor and PI3K/Akt) offers a novel protocol for

accelerated chemoprevention in prostate cancer .

2.3. Quercetin in Reversing Chemoresistance

Chemotherapy is indeed an indispensable therapy for prostate cancer. The development of chemoresistance, however, is

a widespread and crucial issue that requires urgent remedies to be dealt with.

Advanced drug studies have shown that quercetin serves as a potential anti-cancer agent in several types of cancer by

regulating multiple pathways. However, current therapies are limited by resistance, which might be reversed by quercetin.

In this regard, doxorubicin induced resistance was successfully recovered via quercetin in a research study. A cell line-

PC3/R of prostate cancer with acquired doxorubicin resistance was identified. In comparison with normal PC3 cells, a

strong drug-resistance to doxorubicin and significant activation of the phosphoinositide 3-kinase/protein kinase-B

(PI3K/AKT) pathway was shown in PC3/R cells. Doxorubicin combination therapy with quercetin greatly facilitated the

apoptosis induced by doxorubicin in PC3/R cells via the mitochondrial/reaction oxygen species pathway. A major

upregulation of tyrosine-protein kinase-met was observed in PC3/R cells as opposed to normal PC3 cells. Furthermore, c-

met mediated expression rescued quercetin-promoted apoptosis in doxorubicin treated PC3/R cells . This clearly

indicates that quercetin can reverse the resistance of prostate cancer cells to doxorubicin by downregulating the

expression of c-met. This might provide a potential strategy to reverse prostate cancer chemoresistance.

Docetaxel is a first line therapeutic drug that is used in the treatment of prostate cancer metastasis. Unfortunately, the

advent of resistance reduces its effectiveness and restricts its benefits to survival. In prostate cancer cells and xenograft

models, quercetin can reverse docetaxel resistance on proliferation, colony formation, migration, invasion, and apoptosis.

Combination therapy of quercetin with docetaxel can sufficiently inhibit the PI3K/Akt pathway and promote apoptosis.

Subclones susceptible to docetaxel and prone subclones have been treated with quercetin, which showed that docetaxel-

resistant subclones had greater androgen receptor and PI3K/Akt pathway activation, more remarkable phenotypes of

mesenchymal and stem-like cells, and more expression of P-gp than that of parental cells. All these transformations were

interestingly reversed by quercetin . This offers in-depth evidence for the clinical use of quercetin in docetaxel-resistant

prostate cancer.

The effect of cancer treatment and ATP-dependent drug efflux pumps may be significantly affected by multidrug

resistance to chemotherapy, P-glycoprotein, and midkine (MK) contribute to the resistance of different chemotherapeutic

agents. Z—polypeptide 1 is one of the midkine receptors and, in PI3K and MAPK pathways, has been found to be
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synergistically active in midkine-mediated cell migration. Consequently, modulation of the PI3K and MAPK signaling

pathways by quercetin can cause amplification of gene expression associated with endothelial–mesenchymal transition.

Thus, quercetin modulation of the endothelial–mesenchymal transition and drug resistance genes might contribute to the

inhibition of CD44 /CD133  proliferation and migration . In summary, these findings show that MK siRNA coupled

with quercetin can inhibit the therapeutic resistance of CD44 /CD133  cells. Treatment with quercetin combined with the

midkine knockdown strategy could effectively target and facilitate removal of CD44 /CD133  cells, thereby preventing

chemoresistance.

The splice variant AR-V7 is implicated in resistance not only to enzalutamide, but also to abiraterone and other traditional

therapeutics. Clinical evidence indicates that resistance toward the next-generation antiandrogen, enzalutamide, can be

largely induced by alternative androgen receptor splicing to establish constitutively active splice variants (AR-V7). Recent

studies indicate that fusing factors such as hnRNPA1 promote the production of AR-V7 and thus contribute to the

resistance of enzalutamide in cells of prostate cancer. Quercetin decreases hnRNPA1, and subsequently AR-V7

expression. Quercetin suppression of AR-V7 desensitizes enzalutamide-resistant prostate cancer cells to enzalutamide

therapy. Altogether, the underlying mechanism involves downregulation of hnRNPA1 expression, downregulation of AR-V7

expression, antagonizes the signaling pathway of androgen receptors, and desensitizes enzalutamide-resistant prostate

cancer cells to in vivo treatment with enzalutamide in mouse xenografts . These findings indicate that blocking the

alternative splicing of the androgen receptor can have major consequences in overwhelming resistance to antiandrogen

therapy of the next generation.

Metastatic or locally induced prostate cancer is usually managed with androgen deprivation therapy. Prostate cancer

initially reacts to the medication, and then its response begins to revert, gaining tolerance to androgen deprivation and

developing toward castrate-resistant prostate cancer-an incurable form. Research using transgenic mouse models shows

that modulation of the Wnt/β-Catenin signaling pathway in the prostate cancer is cancerous, allowing for castration-

resistant growth of prostate cancer, inducing an epithelial-to-mesenchymal transformation, promoting differentiation of

neuroendocrine and giving stem cell-like characteristics to prostate cancer cells . These major Wnt/β-Catenin signaling

functions in prostate cancer development emphasize the need to establish drugs targeting this pathway for dealing with

resistance to prostate cancer therapy.
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