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Harnessing the immune system for cancer therapy has shown success, however the response to immunotherapy
has been limited. Deciphering the immunopeptidome repertoire of cancer cells is crucial for identifying
neoantigens. To date the emphasis has been on mutations. However, there is more to neoantigens than mutations.
Thus, there is a need to identify other types of neoantigens that are commonly expressed in a cancer type that are
presented by MHC class | and class Il, to induce a cytotoxic CD8+ T and CD4+ T response, respectively. The
immunopeptidome encompasses protein post-translation modifications (PTMs), which are overlooked by genome
or transcriptome profiling. This entry covers how the immunopeptidome can yield novel cancer-specific antigens,

focusing on PTMs and their applications.

immunopeptidome PTM immunotherapy cancer vaccine

| 1. Introduction

Identifying novel antigens in cancer is highly relevant for immunotherapeutic applications including chimeric antigen
receptor (CAR)-T and NK cell, pulsed-dendritic cell therapy, and therapeutic and preventative cancer vaccines [,
Mass spectrometry provides an important means for deciphering the immunopeptidome repertoire of tumor cells [,
Whereas much emphasis has been placed on mutations as a source of neoantigens, the occurrence of specific
mutations in peptides bound to the major histocompatibility complex (MHC) is quite variable from patient to patient
[BI4I5], Thus, there is a need to identify antigenic peptides that are commonly expressed in a cancer type that are
presented through MHC class | for activation of cytotoxic CD8+ T cells BIlZl, Moreover, there is also an emerging

interest in immune peptides bound to MHC class Il that induce a B cell response [EI[2I10],

Since the early days of profiling the immunopeptidome using mass spectrometry (MS) some three decades ago
(11 there has been substantial improvement in the overall approach, including the application of machine learning
(121131114 ' The detection and prediction of immunogenic peptides through genomic and transcriptomic data is
challenging and overlooks protein aberrations that occur after transcription. These include translational errors,
post-translational modifications (PTMs) and peptide splicing that can be uncovered through analysis of the
immunopeptidome [12I181117] Remarkably, PTMs have been discovered to induce immunogenicity more than their
unmodified counterparts. Prior studies by the researchers' group have identified citrullination as a source of
immunogenicity in cancer X8 Other notable PTMs include phosphorylation, acetylation, deamination, and
glycosylation 2920121221 However, not all PTMs are stable and presented by MHC, given their enzymatic

reversibility as in the case of acetylation 23],
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2. The Immunopeptidome as a Source of Different Types of
Neoantigens

The immunoediting concept has been critical for our understanding of the mechanisms through which the immune
system responds to cancer and how tumor cells can evade the immune response 241, A key factor in the immune
response is the recognition of tumor antigens. T cells, through their TCRs, can interact with the myriad of peptides
bound to MHC, sorting out self from non-self. Non-canonical tumor antigens, derived from sequences outside of
exons or by alternate protein-processing mechanisms, are of increasing interest for immunotherapy 22, PTMs are
mediated by multiple enzymes, some of which may be dysregulated in tumor cells, rendering them potentially
tumor specific. Post-translationally modified proteins undergo processing through the proteasome, resulting in
peptides that bind to MHC-I for endogenous proteins or MHC-II for exogenous proteins 28, Dendritic cells (DCs)
are antigen-presenting cells (APCs) in cancer that are essential for T and B cell responses via immunopeptides
and native protein presentation, respectively 2281 PTMs that are restricted to tumor cells have potential as a

source of immunopeptides for immunotherapy.

3. Post-Translational Modifications as a Source of Tumor
Antigens

Whereas a multitude of PTMs are known to occur, most have not been previously investigated in cancer.
Nanoscale liquid chromatography coupled mass spectrometry (nanoLC-MS) has contributed significantly to the
identification of PTMs in the immunopeptidome through matching the peptide parent mass (MS1) and the fragment
mass (MS2) to sequences in the human genome database, allowing for mass shift due to modified amino acids
(e.g., +0.984 Da on Arg) for citrullination; (+97.976 Da on Ser, Thr, and Tyr) for phosphorylation; and (+203.079 Da
on Ser and Thr) for O-GIcNAc. PTMs that have been identified in the immunopeptidome with demonstrated

immunogenicity in cancer (Figure 1).
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Figure 1. Post-translationally modified peptide-based cancer vaccine workflow. The figure depicts cancer cell
antigen processing of intracellular and extracellular proteins, subsequently as peptides bound to MHC-1 or MHC-II.
Some of the proteins have PTMs in their structure, which are sketched in colors (citrullination: red; phosphorylation:
blue; glycosylation: green) as well as in MHC-bound peptides. The MHC-bound peptides are identified by means of
liquid chromatography-mass spectrometry (LC/MS), to derive the cancer cell immunopeptidome. From the

immunopeptidome data, peptides with PTMs can be selected as antigens for cancer vaccines.

| 4. Peptide PTMs as a Source of Cancer Vaccines

Taking into account that the immunopeptidome represents the whole spectrum of peptides presented in a cell,
there is a need to identify the most promising cancer targets. Thus, there is a need to determine the structure of an
MHC-bound peptide and its level of expression for vaccine development. There are numerous ongoing clinical
trials utilizing different antigens and adjuvants as therapeutic cancer vaccines. Focusing on peptides with PTMs as
vaccines, promising findings have resulted from the use of citrullinated peptides (Table 1). A citrullinated VIM
peptide has been utilized as an antigen in combination with an adjuvant induced IFN-y and granzyme B-secreting

CD4+ T cells. Citrullinated VIM-specific Thl cells induced by the vaccine had a potent antitumor response against
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established skin and lung tumors, as well as a long-term memory response 29, Similarly, a citrullinated ENO1
peptide-based vaccine elicited a potent citrulline-specific Thl cell response in pancreatic, skin, and lung cancers
(391 Additionally, ENO1 is commonly overexpressed in different tumor types, including melanoma, pancreatic,
breast, and lung cancer, thus citrullinated ENO1 peptides are plausible antigens for a wide cancer spectrum [28I39
(31, Furthermore, the combination of citrullinated VIM and ENO1 peptides in a vaccine, designated Modi-1, induced
a significant antitumoral response in a mouse model of ovarian cancer. Importantly, a substantial citrulline-specific
T cell response was observed in more than half of ovarian cancer patients 2. Moreover, analysis of the melanoma
immunopeptidome led to the identification of MHC-II-bound citrullinated peptides are derived from MMP21, Cp450,
and GRI proteins B3, A combination of these citrullinated peptides did not induce a greater antitumoral response
than citrullinated MMP21 and GRI peptides individually, pointing to the potential of a reduced response with
multiple peptides with different MHC-II binding specificities [23l. Another source of citrullinated peptides is the NPM
protein. Vaccination with a PADI2-mediated-citrullinated NPM peptide induced an antitumoral response which was
therapeutic, increasing survival and resulting in protection against a second tumor challenge in melanoma and lung
cancer mouse models. Interestingly, PADI4-mediated-citrullination of NPM peptide did not elicit a citrulline-specific
Thl response, in contrast to PADI2-mediated-citrullination 24, The CD4 responses observed may result from
binding of citrullinated peptides primarily by MHC-II 28 in HLA-DP4 and HLA-DR4 transgenic mice. Nevertheless,
the vaccine-induced CD4 response was sufficient to inhibit tumor progression, indicating the effectiveness of

responses that do not involve CD8+ T cells 19,

Table 1. Summary of the post-translational modified peptides used in immunotherapy.

Post-Translational

Modification Protein Cancer Type Immunotherapy MHC Class Reference
ENO1 SKCM, PAAD, LUAD, OV Vaccine I [18][30][31][32]
VIM SKCM, LUAD, PAAD, OV Vaccine I 29][32]
MMP21 SKCM Vaccine Il 23]
Citrullination
GRI SKCM Vaccine I [231
Cp450 SKCM Vaccine 1] [33]
NPM SKCM, LUAD Vaccine I (24]
ISR2 SKCM Vaccine, ACT | (35](36]
Phosphorylation BCAR SKCM Vaccine I (361
CDC25b SKCM ACT | [25]
Glycosylation MUC1 BRCA, PRAD Vaccine, DCTher Il [S7][38][39][40]
MUC4 NA Vaccine I [41]
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Post-Translational

Modification Protein Cancer Type Immunotherapy MHC Class Reference
although
L . PHOX2B Neuroblastoma CART cell I [42] .
immunopeptidome ar ) eptidome

analysis of melanoma, ovarian carcinoma, B lymphoblastoid, and leukemia resulted in the identification of a large

ACT; AdoPtive Cell Therapy; DCTher: Dendritic Cell Th_eragg ENO1: a-enolase 1; VIM: vimentin; ﬁ 1: Matrix
number ot phosphopeptides that were cancer specific with CD8 T cell antigen specificity in patients . Some of

Metalloproteinase-21; GRJ: Glutamate. Receptor lonotropic; _NPM: Nucleophosmin; ISR2: Insulin Bﬁ@%r
the identified phosphopeptides were derived from ISR2, BCAR, TNS2, SELH, CDC25b, and beta-catenin ,

Substrate 2; BCAR: Breast Cancer Antiestrogen Resistance 3; SKCM: Skin Cutaneous Melanoma; PAAD:
concordant with the identification of phosphorylated ISR2, TNS2, and SELH peptides in the colorectal cancer

Pancreatic Adenoc%inoma; PRAD: Prostate Adenocarcinoma; BRCA: Breast Invasive Carcinoma; LUAD: Lung
immunopeptidome =2,

Adenocarcinoma; OV: Ovarian Serous Cystadenocarcinoma; NA; Not Applicable.

As for glycopeptide-based cancer vaccines, an initial source was the glycosylated MUC protein displaying the Tn
antigen. Immunization of mice with a desialylated ovine MUC with substantial representation of the Tn antigen
elicited primarily a CD4+ T cell response specific to the Tn antigen. Conversely, immunization with a
deglycosylated MUC did not induce an immune response €. The induction of an immune response specifically
against the PTM protein suggests that glycosylation may be a useful source of cancer-specific antigens given the
findings of aberrant glycosylation in many cancers, notably breast cancer 2248 A case in point is a fully synthetic
cancer vaccine, a dendrimeric multiple antigenic glycopeptide displaying a trimer of Tn antigens (MAG-Tn3)
associated with a promiscuous CD4 epitope, the tetanus toxoid-derived P2 peptide, that has been shown to induce
an antitumoral Tn-specific T cell response in monkeys “4. This MAG-Tn3 vaccine has been used in a phase |
clinical trial for high-risk relapsed breast cancer patients (NCT02364492). Another cancer vaccine in clinical trial is
based on MUC1 bearing Tn antigens (Tn-MUC1) pulsed with autologous DCs 2. This phase I/Il clinical trial
follows the same strategy used in rhesus macaques, which resulted in five out of seven castrate-resistant prostate
cancer patients having a CD4 and/or CD8 response (NCT00852007).

Given the complexity of glycan modifications, there has been a surge of various approaches to identify and
develop glycopeptides as vaccines, as reviewed above, including the use of glyco-antigen microarrays to
investigate immune responses to cancer vaccines #2B%, Another development is the use of an antigen delivery
system based on gold nanoparticles with Dectin-1 to target DC, conjugated with MHC-II glycopeptides. This gold
nanoparticle glycopeptide vaccine elicited a strong humoral and cellular immune response in mice B4, In all, much
progress has been made in the identification of glycopeptides and their structural and other properties to enhance

their effectiveness as cancer vaccines 22153154](55]
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