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Autonomous driving is a technological innovation that involves the use of Artificial Intelligence (AI) in the automotive area,

representing the future of transport and whose applications will influence the concept of driving and many other features

of modern society. Indeed, the introduction of Autonomous Vehicles (AVs) on the market, along with the development of

related technologies, will have a potential impact not only on the automotive industry but also on urban transport systems.

New mobility-related businesses will emerge, whereas existing ones will have to adapt to changes. 
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1. Background

The introduction of AVs within the transport industry has become gradually effective with time, with an acceleration in the

last decade. Their operations are affected by several factors, depending mainly on elements such as type of installed

devices, scenarios, and country legislations; since these aspects affect the specific level of autonomy of vehicles, they

heavily influence the spread of AVs.

Depending on tools and vehicles equipment and according to the classification provided by SAE (Society of Automotive

Engineers), it is possible to divide autonomous vehicles into two classes, each characterized by six levels of automation:

the first class, equipped with ADS (Automated Driving Systems) which offers autonomous vehicle performances, and the

latter equipped with tools for driver assistance only. Eventually, ADS sensors and the aforementioned tools allow vehicles

to establish a V2I, V2V, and V2X communication that enables environment detection and, consequently, autonomous

driving maneuvers. In addition to these technological systems, autonomous vehicles are equipped with LiDAR, GPS,

cameras, and sensors whose performances have recently achieved high standards. In any case, autonomous vehicles

still require an operational environment that facilitates the detection phases.

For these reasons, any environment where autonomous vehicles are expected to operate must establish an information

exchange activity through specific devices within the ITS (Intelligent Transport System) identified as RSU (Road Side

Units). Such tools communicate with AVs so that a single vehicle can be informed about a specific roadway stretch, to

perform all the appropriate interventions. Moreover, communication involves the monitoring of traffic and pavement

conditions, and this system is identified as SRE (Smart Road Environment) [3]. In Figure 1, it is possible to recognize an

example of how an SRE can cooperate with AVs.



Figure 1. Example of potential SRE scenario with AVs [4].

A more accurate analysis of the advantages brought by AVs can be appreciated when making a distinction among vehicle

service types; vehicles are generally classified according to their load capacity, or whether they operate for public or

private service. AVs’ availability for private use would significantly improve urban traffic in terms of traffic management

(congestion phenomena reduction) and safety, as a consequence of the high degree of precision of AVs maneuvers.

Consequently, mass transit and public transport service [5,6] would increase their capacity and frequency due to the

possibility of reducing the headway between mass transit AVs, as they would be able to brake promptly thanks to the high

number of electronic sensors. Nowadays, several AVs are already in use for public service; similarly, AVs for private use

are already on the market, although mainly of level-3 type within the SAE classification. Speaking of public transport, AVs

have been introduced through the adoption of electrical minibuses with a maximum capacity of 20 passengers. Their main

operational scenarios are airports, parks, and hospitals, just to name a few; generally, their maximum speed can reach 25

km/h [7]. The main real obstacle potentially slowing down the AV spread is of financial nature, as these vehicles are

generally expensive for the common buyer; the minimum cost for manufacturing a single AV ranges in fact between EUR

6500 and 200,000. On the other side, AVs with their high precision performances lead to a reduction of car accidents,

meaning reduced insurance fees and lower accident-related expenses [8,9].

Autonomous vehicles represent a new business in which several automotive manufacturers and transport companies are

already focusing.  Figure 2  shows some of the brands that have already begun investing funds in AVs, and that are

expected to strongly influence the market by 2030 [10].

Figure 2. Evolution and expectations about automotive companies AVs market [10].

2. State of Art: An Overview on Safety for AVs (Risks, Drawbacks, and
Benefits)

The current scientific literature on safety for AVs covers diverse technical aspects, spanning from the electronic and

software progress to the interaction with other vehicles and surrounding infrastructure. The range of AV-related risks is

quite broad, considering the heterogeneity of the transportation industry and how it can affect people lives in many

different ways: from political decisions and governances to technology investments, from safety-related costs to user

behavioral models, and from the effects on financial markets to the environmental impact, to mention a few. Through

efficient risk management actions, risk reduction and mitigation should be attained in order to improve the AV technology

and make it widespread to the public, primarily accepted by mass and everyday use.

Even if not strictly related to AVs’ mechanical design and dynamics, a risk recently coming under the spotlight is that of

health, with a particular reference to COVID-19 and by extension to other sanitary hazards. AV sharing can potentially

constitute a carrier of diseases; therefore, proper measures must be identified and implemented to reduce this risk. In the

case of Coronavirus, for shared and public vehicles which are used by different users, the infection can be spread mainly

by contact with infected surfaces and through airborne droplets. Hence, adequate sanitation systems should be

developed and implemented to allow safe sharing conditions, and to increase the sense of trust and safety perception

towards shared vehicles; in fact, users might be less enticed to use shared vehicles for fear of diseases. On the other

side, it is interesting to note that since AVs can be operated automatically to transport goods and carry out deliveries

without the need to employ human drivers (i.e., drones) [11], the risk of transmitting diseases gets potentially reduced, as

the interaction between consignees and the driver is basically absent (should they be appropriately designed to minimize



contact between the various consignees); AVs are therefore useful also for delivering sanitary goods such as vaccines or

bio-hazard materials during pandemics [12]. Moreover, implementing strategies and devices to monitor passengers’ health

status on shared AVs can help with controlling and monitoring the spread of diseases over a specific area. In this sense,

there is potential for new related ideas for further research studies in the upcoming years. Figure 3 shows the Hercules

logistic Autonomous Vehicle used during the COVID-19 pandemic to deliver food and medical supplies.

Figure 3. Hercules logistic AV used during COVID-19 pandemic to deliver goods [12].

In terms of governance, governments and agencies can adopt various strategies to manage AVs related risks depending

on their visions and desired outcomes. In this type of approach, risks mainly refer to road accidents and their

consequences, typically having significant impacts on people’s life quality (principally physical injuries and deaths) and

costs impacting national health systems and transport infrastructure. The way governments decide to intervene to

manage traffic and, specifically, to regulate AV will affect how transportation systems respond in terms of safety. Examples

of strategies typically vary from a no-response approach to implementing control interventions [13,14]. The adoption and

spread of AVs impact the surrounding environment and territory, both urbanized and countryside, by affecting transport

dynamics and user behaviors [15] such as commuting or logistics. All of these aspects reflect the way transport

infrastructure is thought and built [16]. In addition, the application of AVs to public transport systems could further

incentivize their use rather than smaller vehicles with lower capacity (i.e., cars) [17].

Applying these concepts to road design leads to a change in the typical paradigms of the road infrastructure design,

considering, for example, all the work necessary for the implementation of those roadside electronic devices that

communicate with AVs (i.e., cameras, pavement sensors, and electronic booths). All these elements must be taken into

account in urban and land use planning, as they can affect parameters such as urban density, land use, impact on the

environment, used materials, and emissions, to name a few. Table 1  lists some of the possible governance strategies

adopted to manage AV-related risks on the transport network.

Table 1. A brief description of several strategic approaches [17].

Strategy Description

No-
Response

No specific actions or dedicated regulations are implemented. An example might be the lack of dedicated
national policies to manage AVs acceptance standards, traffic operations, and related consequences.
Although this might seem the cheaper option, at first glance, AV-related risks left alone without management
can be higher in the end, leading potentially to significant costs arising from the lack of risk management and
making it not economically convenient in the long term.

Prevention-
oriented

Risk is managed by avoidance, i.e., risk is reduced by removing the hazard, trying to prevent negative
consequences by eliminating the source that would cause them. An example is the prohibition of
AVs for certain times or areas of the road network.

Control-
oriented

The hazard is here admitted and controlled by making predictions and regulations as an attempt to reduce the
probability that consequences would happen. Examples of regulations could involve the mandatory
requirements for AVs certified safety standards, dedicated road traffic policies, use of traffic prediction
models, and so on.

Toleration-
oriented

With this approach, governments tend to make sure to be in a strong and solid position when facing risks
across diverse situations. An example is the publication of comprehensive lists to describe contingency
plans or clarify insurance liabilities while seeking alternative solutions to mitigate risks.



Strategy Description

Adaptation-
oriented

Being an adaptation strategy, the approach consists of improving the reaction caused by an existing source,
accepting the hazard and its uncertainties, reducing the impact of consequences, and improving system
performances. The aim is to achieve a resilient system.

Electronic and Information-Technology (IT) applied to AVs also constitute a potential risk in terms of safety. Automatic

vehicles adopt electronic platforms and computer processors (Hardware, or H/W), along with dedicated software

programs and specific code lines (Software, or S/W). Like any other technological device, these systems are subject to

malfunction or failure risks, with possible consequences to the entire surrounding environment. In case of the automated

systems’ failure, an up-to-date backup plan managed by human beings should always be available and ready to be put

into action, involving trained staff (traffic managers and constables, to name a few). In addition, additional issues may

appear due to the potentially inaccurate interaction between computerized and non-computerized elements, such as

pedestrians or bicycles, as the surrounding context of an AV is often unpredictable [18]. For instance, some recent studies

have focused on AVs’ interaction with ramp metering [19]. AV models are based on mathematical algorithms that can be

translated into software [20], and dedicated studies have been developed over the last decades. Different models bear

different pros and cons and should be examined singularly. Another issue concerns security, as IT systems can potentially

get hacked and hijacked [21]. An adequate level of cyber-security is, therefore, necessary [22]. Since AVs work with

automated systems, a well-calibrated model should guarantee precise and optimized vehicle flows, leading to improved

travel times, lower traffic congestion, reduced levels of pollution, and higher safety standards. As an example,  Table

2 shows how applying fitting algorithms to AVs’ interaction with ramp metering can lead to improved Levels of Service

(LOS), lower levels of fuel consumption (g/kg of fuel) and emissions (grams) in the road network [23]. Acronyms reported

in  Table 2  are Carbon Monoxide (CO), Volatile Organic Compounds (VOC), Nitrogen Oxides (NOx), referring to the

quantity of Vehicles (VEH).

Table 2. Improvement of LOS, fuel consumption, and emissions with the application of specific algorithms [23].

Scenarios Los Vehs Fuel Consumption Co Nox Voc

No-Control LOS F 5509.00 3770 69,613 13,544 16,133

ALINEA LOS D 5759.00 2319 42,822 8332 9925

VSL LOS D 5692.00 2140 39,511 7687 9157

VSL+ALINEA LOS D 5741.00 1902 35,114 6832 8138

VSL+ALINEA/B LOS C 5904.20 415 29,024 5647 6726

3. AVs Critical Issues: Aspects Related to Specific Infrastructures
Components

The accuracy level of AV operations depends on several factors related both to vehicle tools and context characteristics.

Accuracy from vehicle tools is ensured by a high number of cameras, sensors, and connections with LiDAR’s systems

that allow space detection during vehicle movements, while the latter depends on infrastructure characteristics, i.e.,

presence of ITS or RSU devices, intersection signals, and horizontal road markings [24]. When considering high-

performance detection systems for AVs maneuvers, roadway geometric layouts do not require significant upgrades,

whereas pavements might require more invasive interventions. Pavements are made of several layers characterized by

constant thickness across each horizontal cross-section, an aspect to be taken into account when upgrading the road

infrastructure due to correlation with the AVs maneuvers causing a reduction of the “vehicle wandering” phenomenon.

3.1. Autonomous Vehicles Detection Capability at Intersection and for Horizontal Road Markings

The quality of horizontal road markings plays a crucial role for autonomous vehicle detection, not only to avoid conflicts

but also to facilitate pedestrian individuation, for instance, in zebra crossing points. Hence, ADAS (Advanced Driving

Assistance Systems) equipped by AVs must ensure an efficient and smart detection of road markings, primarily due to

their frequent deterioration (mainly caused by severe weather and actions from rolling wheels) and also to poor

maintenance. Road markings are fundamental for vehicle lane-keeping, with straight or curved lines substantially

characterizing these signal types; additionally, horizontal markings may also include directional arrows, helpful for the AVs’

decision-making process. However, directional arrows can be perceived differently than simple lines by visual cameras

due to several factors like angles of view, line thickness or interference of shadows projected by nearby objects. In AVs,

the detection process of horizontal road markings occurs through vision-based systems that result to be the more



appropriate, mainly for economic reasons thanks to the inexpensiveness of vision cameras. Moreover, these systems also

allow the creation of 3D input data whose quality is optimal as one of LiDAR’s systems [25], useful considering that visual

data is the most suitable input for human drivers.

Therefore, road marking detection has a dual approach, the first related to AV detection capabilities and the second to the

quality of horizontal road markings. The latter represents an aspect of vehicle circulation affecting safety regardless of

autonomous performances and MV (machine vision) capabilities. Since 1992, Miller highlighted how to correct

maintenance of road markings involves at least sixty times less than costs caused by incidents caused by a lousy

perception of roadway spaces. The parameter that mainly affects MV’s road markings perception is the retro-reflectivity

(RL), especially in low light hours. Such feature represents the capability to reflect radiations and can be measured as

mcd/m²/lx. In 2016, Matowicki et al. demonstrated that, when road markings had an RL = 50 mcd/m²/lx, MV systems

began to show malfunctions, while other studies, like the one of Davies in 2017, reported that MV was also affected by

width and color, where white was more suitable to be detected compared to yellow [2].

Several methods have been studied to facilitate road markings detection with various processes. For example, Hechri and

Adellatif provided a system characterized by two video-based driving tasks. At the same time, Lee combined AVM camera

features with LiDAR’s data. Ultimately, Zhen Kang and Qiao Zhang proposed an algorithm able to speed up map

rendering by solving point cloud data [26]. Some of these studies were also analyzed through a forecasting process with

simulation software. Le-Anh Tran and My-Ha Le carried out their proposal of a robust road lane markings detection

system with simulator CARLA that showed how the system resulted inefficient in straight parts. At the same time, it did not

present beneficial results in curves [27].

It is possible to state that the quantity of horizontal markings is related to the roadways context dynamism, meaning that,

whenever the possibility of change directions and actors being part of a specific context is elevated, the high quantity of

roadway markings will characterize the environment. Therefore, intersections represent a critical issue for marking

detection, but for instance, a vital detection challenge for AV sensors is the work area. Work zones are subject to

unexpected continuous variations, mainly due to vehicle movement. That is why horizontal markings have a crucial role in

implementing a safe work context, especially in highways or freeways where speed ranges are elevated. For these

reasons, some studies considered proposing new pavement markings for work zones, as reported in Table 3 and, in some

cases, with no predetermined itinerary vehicle so with driver presence. Generally, in a work zone, a significant trial for

autonomous vehicles is the reduced lane width between 3.5 and 2 m, if not even less. Different types of barriers or

furniture can also be positioned in such lanes that the AV detected as obstacles can cause vehicle sudden stops when is

not required. Ultimately, one last critical aspect consists of using various pavement marking materials to cause a high

quantity of data collection for AVs when required just the same function or markings detection. Then it would be helpful to

the deployment of uniform materials [28]. One aspect that can help solve the aforementioned problems is the lower speed

in work zones that allow detection sensors to get better environment perceptions. Therefore, speed range is fundamental

[29]. Highways or freeways can be subjected to many conflicts if signals and markings are not efficiently detectable. It has

to be highlighted that autonomous vehicles’ processes related to environment detection can co-occur to a data

management and decision-making process of multiple vehicles handled by a central infrastructural system. Then, it is

helpful to apply methods that facilitate the operation previously cited. For example, it is possible to apply protocols related

to vehicle intersections behavior based on V2V communication. Some of these protocols are Advanced Maximum

Progression Intersection Protocol (AMP-IP) and Maximum Progression Intersection Protocol (MP-IP). MP-IP objective is

intersection throughput increase concerning safe crossings until its primary goal of passage safety is satisfied all vehicles

are allowed to cross the intersection, also in case of potential conflicts. AMP-IP considers a general conflict cell, allows

low-priority cars to cross the intersection before high-priority vehicles arrive [30]. Automated Intersection Management or

Intersection Managers (IM) are systems designed to interact with vehicles approaching intersections, aiming to improve

traffic safety and efficiency.

Table 3. New markings for AVs movement in work areas [28].



Marking Type Pavement Marking

Lane Open

Lane Closed

Right Turn Single Lane
Ramp Closure

Right Turn For Single Lane
Right Ramp Closure

Merge Right

Left Turn Two-Lane
Ramp-Left Lane Closure

Left Turn Two-Lane
Ramp-Right Lane Closure

Left Turn Single Lane
Ramp Closure

U-Turn

Start Work Zone

End Work Zone

Work Zone Edge Line
(Contrast Pavement Marking)

One of these systems’ benefits is that they can reduce the probability of accidents caused by human mistakes, often due

to improper driving evaluations or impulsive driving behaviors, due to emotional decisions or instinctive actions rather than

logical analysis [31]. Driving reaction times during emergency maneuvers are very short and often will not leave the driver

enough time to decide the next move wisely. Automated Intersection Management (IM) systems work by exploiting the

communication between vehicles and devices placed on intersections. Vehicles approaching the intersection at constant

speed transmit a speed query to the IM, receiving a Yes/No reply depending on other simultaneous requests from other

vehicles to optimize flow and manage safety. In case of a positive reply, the incoming vehicle is authorized to proceed and

can drive forward, crossing the intersection at the requested constant speed. Should the answer be negative, in that case,

the vehicle will slow down and resend new queries to the IM. Once the vehicle crosses the intersection, another signal is

sent to the receiving device, communicating that the maneuver has been completed. This system increases the

admissible road traffic volume and relies on a large and increasing amount of data to be exchanged between AVs and IM.

Hence, its efficiency depends on the accuracy of this shared data. Robust Intersection Manager’s system adds the benefit

of tracking vehicles’ trajectories approaching an intersection associated with a Velocity of Arrival (VOA) and Trajectory of

Arrival (TOA) as they get close to the junction. This situation leads to increased accuracy and higher safety levels. This

system is still subject to hardware or communication errors and even to hacking attempts interfering with vehicle

positioning and speed detection. Figure 4 below depicts the dynamics of an accident happening with these systems.

Figure 4. Accident dynamics on IM systems [31].

The use of new strategies, based, for instance, on the Right-of-Way Assignment (RWA), can improve traffic dynamics in

the presence of non-signalized intersections. This strategy is based on marking short-term decisions for the right of ways

and on one-to-one communications. Other assumptions include that two vehicles can cross the intersection



simultaneously and that pilot vehicles can obtain information about speed, location, and driving intentions of other

surrounding vehicles. Moreover, priority levels and precedence rules are defined. A related strategy, called Cooperative

Driving Strategy (CDS), introduces the assumption and possibility that the information connecting all the elements

involved in traffic (pedestrians, bicycles, and vehicles, to name a few) is available via a V2X communication system, which

can cover up an area of 300 m or even more. This methodology splits the junction in a grid made of several smaller areas,

regulating vehicle traffic by setting up the minimum time interval between two vehicles. Results from dedicated research

studies [32] show that this approach leads to higher performances compared, for example, to a traditional Responsibility

Sensitive Safety (RSS) approach (which applies a typical First-In/First-Out (FIFO) strategy with few

communications).  Figure 5  and  Figure 6  show a significant difference in performances between RWA/CDS and RSS,

specifically in terms of average delay/arrival date and throughput/arrival rate ratios.

Figure 5. Comparison between RWA, CDS, and RSS in terms of average delay/arrival rate [32].

Figure 6. Comparison between RWA, CDS, and RSS in terms of throughput/arrival rate [32].

Simulation models for AVs at intersections can also be trained thanks to machine learning, specifically Reinforcement

Learning (RL) and computer vision. Aerial photographs can provide visual information about the road intersection to

create a simulated model. The vehicles’ position, both autonomous and manned, can be detected using deep neural

networks of various kinds [33]. Vehicles in the intersection can be detected with the segmentation technique, starting from

a full-color aerial image of the crossroad captured with drones and then post-processed, moving through computerized

Fully Convolutional Network (FCN), creating a B/W image which then becomes clustered through a DBSCAN. With the

OpenCV CVAT software tool, vehicles on the aerial images are marked and labeled with polygons (rectangles and



ellipses), indicating the relative location. Possible trajectories are marked with polylines as well. Vehicles are finally

manually removed from the image, leaving the polygons on. The image becomes then binarized and clustered into closed

regions with the DBSCAN algorithm, filtering and discarding the smaller regions. From this point onwards, the simulation

is undertaken thanks to the application of complex neural network algorithms that eventually lead to a calibrated and

portable model, which can then be included in larger Automated Intersections systems.

Like RL and computer vision, Neural networks Systems (and generally speaking systems based on machine learning)

often require advanced and expensive hardware tools like for example survey drones with cameras and powerful

computers, which are not always affordable for common application. However, they can be seen as an example of how

current technology for AVs has become sophisticated, considering how drones and surveying sensors have quickly

become mainstream in recent years. In addition, there is always the risk of malfunctions or even hacking attempts to

cause some damage. In addition to technical constraints, which can affect accuracy and influence costs, the use of

drones might require special authorizations and licenses, which is another parameter to consider. Negligence, in this

sense, might lead, for example, to fines, trials, or any other legal inconvenience with reputational and financial

consequences. On the other hand, the achieved benefits are related to traffic optimization and its subsequent effects, the

portability and flexibility of the simulation models, and the improvement of the modeling accuracy. The flowchart in Figure

7 summarizes the process adopted in this method.

Figure 7. Flowchart of the RL: computer vision process for an intersection [33].

It is helpful to remind, with a brief excursus, that artificial or electronic neural networks are computational systems inspired

by and resemble biological neural networks, i.e., the complex system of neurons (nodes) and synapses (connectors)

typical of animal brains. These systems allow the reconstruction of real-life scenarios characterized by the presence of

scattered and interacting elements. It is beneficial, for instance, in camera detection whenever the nodes are hard to spot

due to bad weather conditions, low light conditions, or obstacles concealing them [34]. Image segmentation can be

performed with systems like Structured Inference networks [35], based on the assumption that the analyzed data

conforms to a Gaussian State Space Model (GSSM). Commonly, algorithms to train neural networks fall into three major

types: Levenberg-Marquardt, Bayesian Regularization, and Scaled Conjugate Gradient [36]; adopting the best fitting

algorithm depends indeed on the geometry of the collected dataset and the surrounding scenario. Deepening into Artificial

Intelligence and Machine Learning would require a reliable dissertation as the subject is pervasive and has its particular

field of study. Therefore, it will not be treated in detail in this article. Other similar approaches allow modeling vehicle

trajectories and their variations for vehicles turning at intersections [37]. One of the methodologies adopted for this

purpose exploits the principle of “Minimum Jerk”, i.e., a model initially developed to describe a human arm’s biodynamics

in a plane, later extended to robotics eventually to AVs for studies on motion control. This model states that a jerk function

can represent movements performed by the arm to carry out tasks like writing or drawing. The minimum jerk is found by

minimizing this function through integration within an interval between a given initial location and a final location within a

given time. The Minimum Jerk model and other support models aimed to identify minimum speeds and the vehicle-related

position [38,39]. When inserted into a simulated framework, these allow estimating turning vehicles’ trajectories at an

intersection. These estimations can be incorporated into automatic intersections to achieve the benefits already

mentioned in this paper. It is interesting to remind that simulations created with all these models must also deal with

human driving behaviors, which statistically depends on parameters [40], such as age, driving skills and training, and state

of lucidity and attention, not to mention all those random parameters that could be present (even the presence of an insect

could disturb the driver and cause an accident). The implementation of AVs [41] would ideally fix these issues, as the

model’s random or less predictable components are removed since the driver is absent. This situation should lead to even

higher optimization levels, increasing safety and reducing travel times, to mention a couple of benefits.  Figure



8 summarizes with a flowchart the process and steps that define the Minimum Jerk approach. In contrast, Figure 9 shows

an example of the computer output, reporting the comparison between paths (a), speed profiles (b), acceleration profiles

(c), aggregated speed profiles (d), and aggregated acceleration profiles (e) for different exit speeds.

Figure 8. Flowchart of the process for Minimum Jerk model [37].

Figure 9. Computer output from a Minimum Jerk model—comparison between several traffic parameters for various exit

speeds [37].

3.2. AVs Effects on Roadway Pavement

Once treated themes related to AVs’ advantages and expected consequences, it is necessary to focus on infrastructural

design features [42,43]. One aspect can regard the change of load layout applied on road pavement. As previously

argued, AVs would be able to keep with high precision in lane position. It is possible to consider that each vehicle’s wheels

would stress road pavement always in the same areas and with almost constant speed in a context aimed at AVs

exclusive transition. Ultimately, it is expected that road pavement would be stressed by vehicle loads not homogeneously,

like for vehicles driven by a human driver (since each driver has its way of driving), but in a cross-section area that could

be almost constant [44,45]. Table 4 reports an overview of AVs’ effects on roadway pavement.

Table 4. Overview of AVs effects on pavement [46].

Effect Consequence

Channelized traffic flow Easier forecasting process related to cracking and deformation detection.

Speed load frequency Pavement surface optimization due to higher frequency of load application.

Acceleration/deceleration
optimization Reduction of longitudinal pavement surface stress.



Effect Consequence

Stop/start maneuvers reduction
at intersection Incidents reduction, traffic management facilitations.

Traffic increase at night Increased pavement life-cycle due to lower temperature.

With the introduction of autonomous vehicles, ordinary traffic will be less subjected to vehicles’ wandering phenomena

than channelized traffic. Such conversion can have several consequences, such as greater rutting, significantly increasing

longitudinal fatigue cracks. In this case, heavy vehicles would have to be mainly analyzed because tires could cause an

elastic deflection bowl. This phenomenon is attributed to the possibility that AVs provide to reduce heavy vehicle

headways. It was demonstrated by De Beer (1992) that, considering loads cycle application applied quicker, due to high

frequency related to headway reduction, road pavement keep a slightly deflected condition that is, in turn, stressed again

by following load axis application.

So, the subsequent deflection will be higher. Such issues can be managed with a technique named “strip road concept,”

consisting of installing two parallel strips made of asphalt, concrete, or improved soil positioned in correspondence to

specific vehicles’ wheels that will transit on that roadway. Significant localized stress pavement is subjected to AVs. It was

detected during accelerated pavement testing (APT). It is noted, in  Figure 10, different pavement responses under

expected AVs and conventional vehicle loading respectively channelized and wandering traffic conditions standard hot mix

asphalt surfaced.

Figure 10. Channelized versus wandering permanent deformation response [46].
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