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1. Introduction

Nanobioengineered-based hybrid electrochemical biosensors exploit the synergistic properties of hybrid systems that

connect biomolecules with nanomaterials to engineer highly sensitive biosensing platforms for the specific electrochemical

detection of different target analytes. Nanobioengineered platform-based electrochemical biosensors have been

implemented in biomedicine, environmental, food, and security industries, demonstrating their versatility and great

potential. Notably, in the biomedical field, modern nanobioengineered biosensing devices are escalating their horizon to

face multitudinous medical complications, i.e., providing early, accurate, and specific diagnoses of diseases .

Electrochemical nanobiosensors are devices designed as alternatives to conventional laboratory-based detection

techniques for disease diagnosis due to their robustness, small size, user-friendly operation, amenability for

miniaturization, and potential for personalized diagnosis . Electrochemical nanobiosensors comprise electroactive

transducer platforms that anchor specific and selective bioreceptors, generating a nanobioconjugate. The

nanobioconjugate uses different interactions between enzymes, antibodies, DNA(RNA) strands, cell-organelles, proteins,

peptides, glycans, etc., with target analytes to report superficial electrochemical changes . The sensing mechanism

involves the target analyte–bioreceptor interaction, generating a stimulus transduced (transformed) into a decipherable

signal that correlates to the target analyte’s concentration in a particular sample .

Despite the tremendous promise of electrochemical nanobiosensors in biomolecular analysis, they sometimes suffer from

poor sensitivity and short shelf life. The limit of detection (LOD) and narrow dynamic range often limit their practical

application, hindering their path toward the market . In this context, current investigations in the biosensing field aim to

engineer nanomaterials that, coupled with biomolecules and transducer platforms, can give rise to specific and versatile

nanobiohybrid-based biosensors to address the commented limitations, paving the way toward real solutions.

In recent years, researchers have dedicated efforts to harnessing the unique atomic and molecular properties of

nanobioengineered nanomaterials, including carbon nanomaterials, semiconductor/conductor polymers, metallic

nanoparticles, and their nanoconjugates . Such nanobiostructures may improve the interaction with the

bioreceptors, thus dramatically amplifying the resultant signal, lowering the LOD, extending the linear detection range,

shortening the testing time, and increasing the long-term stability of the detection systems .

2. Nanohybrids and Nanocomposites

Nanostructured nanomaterials, both nanohybrids and nanocomposites, have been increasingly exploited in developing

electrochemical biosensors  and functional interfaces  with enhanced properties in terms of sensitivity,

selectivity, robustness, and simplicity .

Nanocomposite materials are prepared by combining two or more different materials with different physicochemical

properties, where one of the constituents has dimensions at the nanoscale or, instead, the nanocomposite structure

exhibits a nanometric phase separation of the individual components. In preparing nanocomposites, one of the constituent
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materials acts as a support matrix in which other materials called reinforcement agents are incorporated .

Nanocomposites present mixed properties based on the original properties of each constituent nanomaterial, not modified

during the preparation process .

Similarly, a hybrid nanomaterial combines organic and inorganic building blocks , which present a continuous interface

between the structural components , and new, improved physicochemical properties emerge that are distinct from the

specific properties of the components alone . Hybrid nanomaterials can function as novel electrode materials, signal

amplifiers, and catalysts of the electrochemical reaction of the product generated in situ during the biorecognition event.

To date, the most common hybrid nanomaterials applicable to electrochemical biosensing include metallic nanostructures

, silicon nanomaterials , carbon nanostructures , and semiconductor polymers ,

with great potential for the development of electrochemical nanobiosensors with enhanced performance , as

commented. This section will comment on the main examples of the last ten years (Table 1), focused on nanostructured

nanomaterials employed in developing nanohybrids for their implementation in electrochemical biosensing.

Table 1. Comparative analytical characteristics of nanomaterial-based electrochemical biosensors focused on the last ten

years.

Nanomaterial Hybrid Target 

Analytical

Characteristics

Comments References

Linear

Range
LOD

Metallic

nanostructures

3D hybrid

graphene–GNR.
H O

0 to 50

mM
2.9 µM Metallic

nanostructures have

high catalytic activity,

easy preparation, and

relatively low cost.

However, this kind of

nanomaterial can

change its oxidation

state due to variations

in conditions of the

medium, such as pH,

ionic strength, and

temperature upon

time.

TiO  nanoparticles

encapsulated ZIF-8
Glucose

2 to 10

mM
80 nM

Nanohybrid of

VS /AuNP and

CoFe O

nanozyme

Kana
1 pM to 1

μM
0.5 pM

Ag and hybrid Ag–

Fe O  metallic

nanoparticles.

AA 0.2–60 μM 74 nM

Silicon

nanomaterials

mSiO @MWCNT. Thrombin
0.0001 nM

and 80 nM
50 fM

These nanomaterials

have high mechanical

resistance, thermal

stability, long

functional life, and

versatility;

nonetheless, they

require long synthetic

processes, and their

application is limited to

certain analytes.

MSF/APTES/AgNP STR
1 to 6.2

ng/mL

0.33

fg/mL

Ap–GA–NH MCM-

41–GCE

hemin and

Hb

1.0 ×

10  to

1.0 × 10

M

7.5 ×

10  M

and 6.5

× 10

M

AuNPs loaded in

functionalized

MSNPs

CEA

1.0 × 10

to 100

ng/mL

9.8 ×

10

ng/mL
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Nanomaterial Hybrid Target 

Analytical

Characteristics

Comments References

Linear

Range
LOD

Carbon

nanostructures

MWCNTs and

GQDs.
IL-13Rα2

2.7 to 100 

ng/mL

0.8

ng/mL
These nanomaterials

enjoy thermal stability,

large surface area,

and a wide range of

nanostructures and

functional groups.

They are the main

nanomaterials used in

the preparation of

electrochemical

biosensors.

GQDs/AuNPs. P53
0.000592–

1.296 pM
0.065 fM

CQDs/AuNps Glucose

0.05 mM

to 2.85

mM

17 μM

CoCu-ZIF@CDs
B16-F10

cells

1 × 10  to

1 × 10

cells/mL

33

cells/mL

Polymers

(Chi-Py) mixture,

AuNPs, and

MWCNT

Escherichia

coli

3 × 10  to

3 × 10

cfu/mL

~30

CFU/mL

These have high

biocompatibility, high

affinity, strong

adsorption ability, low

molecular

permeability, physical

rigidity, and chemical

inertness in biological

processes. However,

functionalizing their

surface is necessary

for the anchorage of

bioreceptors, and

some polymers

oxidize due to

changes in medium

conditions.

PANI/active carbon

and n-TiO
Glucose

0.02 mM

to 6.0 mM
18 μM

PEG/AuNPs/PANI
alpha-

fetoprotein

10  to

10

mg/mL

0.007

pg/mL

Other

nanostructured

nanomaterials

WSe  and AuNPs Thrombin 0–1 ng/mL
190

fg/mL Other hybrid

nanostructures have a

large specific surface

area, excellent

electrical conductivity,

and electrocatalytic

properties.

MoS /Ti C

nanohybrids
miRNA

1 fM to 0.1

nM
0.43 fM

AuNPs/Ti C

MXene 3D
miRNA155

1.0 fM to

10 nM
0.35 fM

 GNR, graphene–gold nanorod; AuNPs, gold nanoparticles; Ap, aptamer; GA, glutaraldehyde; GCE, glassy carbon

electrode; MSNPs, mesoporous silica nanoparticles; MWCNTs, multiwalled carbon nanotube; MSF, mesoporous silica thin

film; APTES, (3-aminopropyl) triethoxysilane; AgNP, silver nanoparticles; CDs, carbon-dots; Chi-Py, pyrrole branched

chitosan; PEG, polyethylene glycols; PANI, polyaniline.  AA, ascorbic acid; STR, streptomycin; miRNA; micro-RNA.

a b

[50]

[51]

[52]

2

5 [53]

1

7 [54]

2

[55]

−14

−6 [56]

2
[57]

2 3 2 [58]

3 2 [59]

a

b



3. Conjugation of Nanohybrid Materials with Biomolecules

Biosensors can be label-free and label-based. Briefly, in a label-free mode, the detected signal is generated directly by the

interaction of the analyzed (bio)material with the transducer. In contrast, label-based sensing involves chemical or

biological compounds that act as labels, generating a detectable signal by analytical techniques such as colorimetry,

fluorescence, and electrochemistry .

3.1. Bioreceptors

Biological receptors are biomolecules that bind to a specific ligand with a defined structure, commonly through bioaffinity

interactions. These biological components are used when assembling nanobiosensors due to their high specificity,

differentiating the target molecule from analogous counterparts and even isomers of the same molecule (Figure 1).

Different bioreceptors can be anchored at electrochemical transducers to confer specificity to nanobioengineered devices.

They can generally be classified into five major categories, i.e., enzymes, antibody/antigens, nucleic acids, cellular

structures/cells, and biomimetic entities, as depicted in Figure 1.

Figure 1. Scheme of electrochemical biosensors based on proteins, glycoproteins, antibodies, nucleic acids, aptamers,

cells, or microorganisms at an electrode surface decorated with NPs, silicon nanomaterials, CNTs, graphene, QDs,
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polymers, or other nanomaterials.

4. Functional Groups and Conjugation Chemistry

Assembling nano(bio)sensors involves binding the bioreceptor’s specific and oriented form to the transducer surface 

by physical or chemical methods. The physical methods include the following: (i) physical adsorption of the bioreceptor on

a matrix based on hydrophobic, electrostatic, and van der Waals attractive forces; (ii) enzyme entrapment in a sol–gel,

hydrogel, or paste, confined by semipermeable membranes; (iii) encapsulation—confinement of the biomolecule within a

solid matrix. The chemical immobilization methods include (i) covalent binding of the bioreceptor to a solid matrix or

directly to the surface of the transducer; (ii) crosslinking employing multifunctional, low-molecular-weight reagents based

on the formation of strong covalent bonding between the transducer and the biological material using a bifunctional agent;

(iii) affinity binding, exploiting specificity of a bioreceptor to its support under different physiological conditions (Figure 2).

Conjugation is achieved either by coupling the bioreceptor to the matrix based on affinity interactions or conjugating the

bioreceptor to an entity that develops affinity toward the matrix .

Figure 2. Conjugation of nano(bio)sensors involves binding the bioreceptor’s specific and oriented form to the transducer

surface by physical (A) or chemical methods (B). (A) The physical methods include (I) physical adsorption; (II) enzyme

entrapment in a sol–gel, hydrogel, or paste, confined by semipermeable membranes; and (III) encapsulation. (B) The

chemical methods include (I) covalent binding, (II) crosslinking, and (III) affinity binding.

The physical methods used in developing nano(bio)sensors are based on weak interactions and, therefore, the most

straightforward and affordable. However, they are affected by environmental conditions such as pH, temperature, and

ionic strength, generating biomolecule leaching processes during biodetection and storage. For this reason, covalent

binding is commonly used as an immobilization alternative. However, this methodology requires modifying the surface of

the electrode with a specific functional group that includes carboxylic acid (-COOH), aldehyde (-CHO), amine (-NH ),

sulfhydryl (-SH), and azide (-N ) for the anchorage of bioreceptors. Therefore, this methodology requires precise

knowledge of the surface chemistry of the electrode surface and the bioreceptor to favor the specific and oriented

anchoring of the biomolecules .

Modification of the surface of the transducer can be achieved by bifunctional agents such as 4-aminobenzylamine (ABA)

, 1-pyrenebutanoic acid, acid/basic treatment, or by modification of the electrode surface with affinity agents such as

cysteamine , cyclodextrin , and biotin-avidin . Finally, the modulation of bioreceptor–platform interactions 
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through specific groups on the nanostructured surface and the bioreceptors determines the methodology of

immobilization, promotes the bioreceptor orientation, and increases its compatibility with the platform interface, thus

influencing the selectivity, specificity, and stability of the resultant nanobioengineered platforms . Therefore,

changes in the surface chemistry of the platforms influence the physicochemical and electrochemical properties of the

resultant (bio)sensing devices .

Bioreceptors can be reversibly adsorbed or trapped and retained or embedded on the surface of electrochemical

platforms through ionic, electrostatic, hydrogen bonding, hydrophobic, or van der Waals interactions or irreversibly through

covalent bonds. The interactions depend not only on the morphology and reactive functional groups on the

electrochemical platform but also on the chemical nature, affinity, isoelectric point, and polarity of the solvent as well as

the medium conditions for bioreceptor anchoring. As an illustration, the physical adsorption of bioreceptors can show low

reproducibility due to the leaching effect during the analysis and little stability in different medium conditions. In contrast,

the binding of biomolecules by covalent bonds through activated functional groups, often including carboxylic acid, amino,

thiols, and esters, offers high stability despite possible aggregation, polymerization, and random biomolecule orientation

. Conjugation of nano(bio)sensors involves binding the bioreceptor’s specific and oriented form to the transducer

surface by physical or chemical methods, as depicted in Figure 2.

5. Characterization of Nanobioengineered Platforms

Some of the main techniques to characterize nanoengineered platforms include electrochemical and physiochemical

techniques such as CV, EIS, and DPV to characterize electrochemical behavior and electron transfer; Fourier transform

infrared spectroscopy (FTIR) to characterize the composition and surface chemistry; scanning electron microscopy (SEM)

to characterize morphology and composition; and dynamic light scattering (DLS) to determine the surface properties,

summarized in Table 2 .

Table 2. Characterization techniques of hybrid nanomaterials, nanobioconjugates and electrochemical biosensors.

Techniques Physicochemical Characteristics Analyzed

Fourier transform infrared

spectroscopy (FTIR).

This technique characterizes the functional groups, surface properties, structure, and

conformation of hybrid nanomaterials and nanobioconjugates.

Thermogravimetric

analysis (TGA).

Thermogravimetric analysis of nanohybrids determines their thermal stability by

estimating organic and inorganic material extent.

Ultraviolet spectroscopy

(UV-Vis).

This technique can be used to estimate variables such as K  and V  in enzyme

nanobioconjugates.

Dynamic light scattering

(DLS).
This technique can estimate the hydrodynamic size distribution of nanostructures.

Electrophoretic light

scattering.

The stability of nanomaterials is highly dependent on the surface charge, among other

factors.

X-ray diffraction (XRD).

These techniques characterize hybrid nanomaterials’ size, shape, and crystalline

structure.X-ray photoelectron

spectroscopy (XPS).
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Techniques Physicochemical Characteristics Analyzed

Transmission electron

microscopy (TEM). Imaging techniques study size, size distribution, aggregation, dispersion, heterogeneity,

morphological characteristics, and compositional analysis of the hybrid nanomaterials

and nanobioconjugates.Scanning electron

microscopy (SEM).

Electrochemical

techniques.

Electrochemical techniques such as CV and EIS are used to evaluate electron transfer

before, during, and after the bioreceptors attach to the surface of hybrid nanomaterials.

They are also used to characterize the analytical properties of the resultant biosensors.

6. Examples of Nanobioengineered Platforms for Electrochemical
Biosensing in the Last Five Years

The significant advance in developing nanobioengineered platforms for electrochemical biosensing has been remarkable

in the last five years. However, new 2D and 3D nanomaterials emerge year by year with various improved properties

ranging from quantum tunneling, excellent stability, and high conductivity and versatility, which provide new opportunities

to develop electrochemical biosensors with high selectivity and extremely low LODs. Furthermore, the appearance of

these novel nanostructured materials has led to the implementation of advanced and ultrasensitive biodetection tools

(Table 3).

Table 3. Examples of nanobioengineered biosensors, indicating the nanobiohybrid (nanomaterial and biomolecules) and

analytic characteristics.

Biosensor Application 
Nanobiohybrid: Nanomaterial
and Biomolecules

Characterization 

Analytical
Performance

(Linear Range
and LOD) 

Referencea
 b

c

d



Immunosensor

PSA
Antibody/HP5@AuNPs@g-C N

bioconjugated with PSA-Ab2
CV, EIS, and DPV

0.0005 to

0.00 ng/mL with

LOD of 0.12

pg/mL

HER2 Ab/g-C N /AuNPs/Cu-MOF CV and EIS

1.00 to 100.00

ng/mL with LOD

of 3.00 fg/mL

AXL Ab/fGQDs
XRD, FTIR, UV-Vis,

TEM, EIS, DPV

1.7 to

1000 pg/mL with

LOD of

0.5 pg/mL

CEA
CdSe-QD-melamine and Ab1-TiO -

AuNP-ITO
DPV

0.005 - 1000

ng/mL with a

LOD of 5 pg/mL

CA19-9 CeO /FeOx@mC XPS, TEM, EIS, CV

0.1 mU/mL to

10 U/mL with a

LOD of 10

μU/mL

NMP-22 Co-MOFs/CuAu NWs/Ab
SEM, XPS, CV, and

chronoamperometry

0.1 pg/mL to 1

ng/mL with a

LOD of 33

fg/mL
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Genosensor

Zika Anti-Dig-HRP
Chronoamperometry,

CV, EIS

5 to 300 pmol/L

with LOD of 0.7

pM

Zika genes AuNPs/ssDNA
SEM, CV, DPV, and

chronoamperometry

10 to 600 fM

with LOD of 0.2

fM

CaMV35S gen
Fe O -Au@Ag-sDNA on

MWCNT/AuNPs/SH-sDNA

TEM, XRD, UV-Vis,

CV, and DPV

1 ×10  M to

1 ×10  M with

LOD of 1.26 ×

10  M 

mi-R21

3-(trimethoxysilyl)propyl

methacrylate/ITO/PET/Fc-hybrid

DNA hydrogel

DPV

10 nM to 50 μM

with a LOD of 5

nM

miRNA-122 rGO/Au/DNA
XRD, TEM, Raman,

XPS, CV, and DPV

10 μM to 10 pM

with a LOD of

1.73 pM

OVA SiO @Au/dsDNA/CeO DPV

1 pg/mL to 1000

ng/mL with a

LOD of 0.87

pg/mL

Enzymatic

Glucose GOx/n-TiO /PANI
CV and

chronoamperometry

0.02 to 6.0 mM

with LOD of 18

μM

Glucose
Cu-nanoflowers-Gox-HRP/AuNPs-

GO-PVA nanofibers

UV-Vis, SEM, TEM,

XDR, CV, and

chronoamperometry

0.001 to 0.1 mM

with a LOD of

0.018 μM

Organophosphate

pesticides

acetylcholinesterase/chitosan-

transition metals/graphene/GCE

SEM, TEM, XPS,

XRD, CV, DPV and

EIS

11.31 μM to

22.6 nM with

LOD of 14.45

nM

β-hydroxybutyric acid

Ti C Tx nanosheets conjugated

with β-hydroxybutyrate

dehydrogenase

SEM, CV, and

chronoamperometry

0.36 to 17.9 mM

with a LOD of

45 μM
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microfluidic

electrochemical

biosensor/glucose

 

rGO-TEPA/PB

SEM, Raman, CV,

and

chronoamperometry

0.1 mM - 25 mM

with a LOD of

25  μM

3 7

3

[97]

[98]

2 2
3 4 2

[99]

3 4 [100]

3 4

−6

−4

−7

[101]

3 4
[102]

[103]

[104]

a

b



methylene blue; THI, electron-mediating thionin; PB, Prussian blue; PEDOT, poly(3,4-ethylenedioxythiophene), SPCE,

screen-printed carbon electrode; MSF, mesoporous silica thin film; PNE, polynorepinephrine; IL, ionic liquid; ERGO,

electrochemically reduced graphene.

CV, cyclic voltammetry; EIS, electrochemical impedance spectroscopy; DPV, differential pulse voltammetry; XRD, X-ray

diffraction; XPS, X-ray photoelectron spectroscopy; FTIR, infrared spectroscopy; UV-Vis, ultraviolet visible spectroscopy;

SEM, scanning electron microscopy; TEM, transmission electron microscopy; SWV, square wave voltammetry.

LOD, limit of detection.

7. Limitations, Opportunities, and Concluding Remarks

Biosensor technology based on nanobiohybrid materials represents a vast field that significantly impacts healthcare, the

environment, and food quality control. These functional platforms promote target molecule detection with high specificity

and sensitivity, particularly in the biomedical field . Furthermore, the rational design of the

nanobiohybrids has been demonstrated to enhance the response and long-term stability of the resultant devices due to

the incorporation of nanomaterials with improved properties that promote a favorable nanoenvironment for bioreceptors

anchoring. Besides, the versatility of nanomaterials facilitates the conjugation with molecules by multiple conjugation

chemistry, opening options to detect numerous target molecules.

Electrochemical-based nanohybrid biosensors have the potential to solve most of the limitations and concerns of

bioanalysis and diagnostic tests while maintaining the required sensitivity, selectivity, and LOD to face real needs.

Besides, integrating sample preparation into the device allows the possibility of direct analysis within a sample matrix and

offers opportunities for new strategies of long-term analysis in vivo, among many other exciting applications.

Electrochemical nanohybrid biosensors are particularly suitable for miniaturization and integration in microfluidic devices,

thus reducing the consumption of reagents and samples {Formatting Citation}. Applications include detecting whole cells,

cell components, proteins, and small molecules to address diagnostics and food and environmental control tasks online

and in real-time, but still require more sophisticated platforms with additional elements, such as sample preparation.

Although nanobioengineered biosensors are an affordable analytical strategy relative to gold standard detection methods,

the development of large-scale electrochemical nanobiosensors is still challenging because they require state-of-the-art

technologies for their production in a reproducible and stable manner, directly influencing the cost of the sensing device

. This apparent drawback could be overcome by scaling, automation, and mass manufacturing to lower costs

through advanced methods in elaborating cost-affordable and disposable electrochemical nanobiosensors based on

additive manufacturing, including screen inkjet 3D printing or microfabrication technologies .

Overall, this research exemplified nanobiosensors mainly based on screen-printed electrodes modified with nanohybrids

conjugated with highly specific bioreceptors for enhanced biosensing. Yet, the richness in the art of biosensors deserves

deeper exploration and support of exciting new ideas. Overall, nanobiohybrids are paving the way in the pioneering

development of highly sensitive and selective electrochemical nanobiosensors and represent remarkable research

advances that are a step forward in increasing the impact of this exciting, cutting-edge technology in the field of biomarker

detection of clinical interest .
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