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Developmental dysplasia of the hip (DDH) is a disorder characterized by abnormal hip development that frequently

manifests in infancy and early childhood. Preventing DDH from occurring relies on a timely and accurate diagnosis,

which requires careful assessment by medical specialists during early X-ray scans. 
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1. Introduction

Developmental dysplasia of the hip (DDH) is the most common musculoskeletal developmental disorder that

affects newborns and is regarded as the primary cause of around 25% to 43% of end-stage hip arthroplasty cases

. DDH poses a significant risk to the quality of life for patients from an early age and could persist into

adulthood without proper treatment . Failure to recognize and diagnose DDH in its early stages can lead to

functional impairment, chronic hip pain, progressive hip degeneration, and accelerated osteoarthritis that

necessitates surgical intervention later in life .

DDH occurs when the femoral head does not fit into the socket due to an abnormal hip joint, leading to limited hip

range of motion, and noticeable gait abnormalities. Early identification through reliable hip diagnostic screening is

crucial for timely intervention . Detecting DDH at an early age significantly reduces risks of long-term

complications.

The current clinical approach for diagnosing DDH involves manual measurements of various anatomical

characteristics from pelvic radiographs, followed by assessment by experienced clinicians or radiologists. However,

this process lacks standardization and heavily relies on subjective metrics, demanding a greater degree of

knowledge and clinical experience. Recent advancement in computer-aided medical diagnosis (CAD)

supplemented with pattern recognition techniques have made it feasible to incorporate these technologies into

practical solutions that offer an automated, standardized, and reliable diagnosis of DDH in infants. These solutions

utilize the acetabular index angle measurement (AcI) as a clinically established radiographic measurement for

assessing the severity of DDH in individual cases (Figure 1). AcI is measured by calculating the angle between two

lines. The first line extends from the medial edge to the most lateral aspect of the acetabular sourcil, which refers to

the inner rim of the acetabulum. The second line, known as Hilgenreiner’s line, or H-line, runs horizontally on the

pelvis. The degree of the angle formed by their intersection indicates the range within which the acetabular index

falls. An increased acetabular inclination range is indicative of the presence of DDH .
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Figure 1. Calculating the AcI, with H-line displayed (Adapted from ). Keypoints: LU: Left upper; LD: Left down;

RU: Right upper; RD: Right down.

2. Related Literature

There have already been several advances in utilizing CAD to assess DDH in the last decades. The first attempt to

automatically detect relevant landmarks from medical images of the infant pelvis could be traced back to 1997,

when Overhoff et al. , introduced an image processing-based approach to determine the region of interest (ROI)
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of the acetabulum and approximate the sphere of the femoral head in 3D ultrasound images. The findings of the

study were further extended  to detect the acetabular landmarks used to assess the relevant angle

measurements. More image processing-based algorithms such as the Hough transform were proposed  to offer

a fully automated approach for the measurement of the acetabular cartilage in MRI medical images. Moreover, in a

more recent study, Hough transform was paired with canny edge detection to assess relevant landmarks on the

pelvic X-ray images .

2.1. Detection & Diagnosis Software Tools

Many medical professionals use CAD-based tools to make assessments in clinical settings for DDH diagnosis and

AcI quick measurement. Acetabular Index, an application for portable devices, calculates the index via manually

detected landmarks. It measures angles in X-ray images through the aid of a circular transparent template, where

the points of interest are marked accurately. The lines automatically formed between points serve to measure the

angles of interest. Although an abundance of research attempts to propose a reliable method for automating

medical diagnosis, few are deployed and utilized in professional environments. BoneView is a good representation

of a fully-fledged medical software powered by AI that offers diagnostic features for bone lesions, fractures, and

dislocations detection for bone trauma X-rays. Techniques used in BoneView include a ‘Detectron 2’-based

diffusion-convolutional neural network (DCNN) model developed for image training. In addition, it applies natural

language processing (NLP) algorithms to infer diagnostic interpretations from radiologists’ reports . Similarly,

ImageBiopsy Lab launched several software products to detect anomalies in the musculoskeletal system. One

product is IB Lab LAMA for automating the assessment of pre-and post-total knee arthroplasty (TKA) lower limb

alignment using AI methodologies in addition to “HIPPO” for hip angles and morphology assessments 

.

2.2. Research Utilizing ML/DL-Based Methodologies

Although traditional image processing-based CAD approaches have achieved acceptable results, they struggle

upon implementation with larger and more diverse datasets. In addition, they have a lengthy processing procedure

that is impractical in medical environments. That is where artificial intelligence (AI) concepts such as machine

learning (ML) and deep learning (DL) come into the picture with a variety of algorithms and frameworks that had

been implemented for several purposes such as classification, object detection, instance segmentation, and

keypoint detection. Several ML- and DL-based solutions have been utilized in anatomical landmark detection and

segmentation in the medical X-ray imaging of the pelvis. Thompson et al.  utilized a random-forest-based

method for measuring the radiograph’s angular parameters (AcI, RMP) based on automatically detected

anatomical landmarks. The proposed system was tested and validated on a clinical dataset of 200 cases. Another

ML model was proposed by Jiang et al.  using a computer-aided system (CAD) to semi-automatically measure

the Tönnis angle, Sharp angle, and CE angle following the bone contours of the hip joint. The CAD system consists

of four stages that involve manual bone outlining, automatic landmarks extraction, automatic angle measurement,

and hip development assessment and classification using a machine-learning modal support vector machine

(SVM). The dataset consisted of 248 X-ray images from Zhongshan Hospital of Dalian University, China.
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Using a dataset of 9369 images for patients aged from 0.1 to 14 years, Jingyuan Xu et al.  used an hourglass

network with an encoder–decoder architecture to generate the heatmap for landmark detection of the pelvic

images. The landmarks detected were then used to calculate the acetabular index angle and the age of the femoral

head. Similarly, Li Q et al.  utilized 11,574 orthotopic anterior pelvic X-ray images to train and test a deep-

learning model that consists of a modified Mask R-CNN built on FPN and ResNet101. The model detects four key

points of sharp angles from pelvic X-ray images and is later used to automate the calculation of the acetabular

angle. Mask RCNN architecture has yet another use case where it was implemented by Xu et al.  for image

segmentation of the pelvis as the first part of a three-stage pipeline. The second stage was built using HRNet to

extract the four relevant DDH landmarks. The final stage was a ResNet model providing a binary diagnosis, which

was compared with the judgment of three surgeons to evaluate the AI performance on a dataset of 1398 cases.

Additionally, Lee et al.  used a Mask RCNN model on ultrasound images to segment the shapes formed by the

ilium and acetabular head, then assessed two points on the ilium and three points for calculating the α and β,

angles using a dataset of 321 ultrasound scans. Zhang et al.  built an FR-DDH deep-learning network with

baseline of ResNet101 model to extract feature maps and generate potential neighborhood regions to assess the

relevant landmarks and calculate the necessary measurements. The study used 10,219 anteroposterior pelvic

radiographs from children aged 10 days to 10 years with a mean age of 1.5 years.

Several research in the literature aimed to implement a classification model for diagnosing DDH directly. For

instance, in a similar study by , authors utilized 13 deep learning CNN pre-trained models to individually perform

binary classification of DDH with different input sizes, widths, and depths using the ImageNet dataset fine-tuned on

a custom dataset with a size of 354 images. Out of the 13 pre-trained deep-transfer models, DarkNet53 achieved

the highest performance with an overall accuracy of 96.3%, equating to 95%, 90.6%, 100% and 94.3% for the F1

score, precision, sensitivity, and specificity, respectively. Park et al.  constructed a dataset of 5076 cropped

unilateral hip joint images and developed a customized CNN binary classifier to evaluate the abnormality of the

extracted unilateral hip joints from AP radiographs.

Similarly, in  authors developed an AI-based clinical decision support system in association with non-expert

clinical DDH ultrasound staff. In the workflow experiment, the AI-based app exhibited 100% specificity and

recommended follow-ups with relatively fewer errors. In , authors presented a novel deep learning-based

approach to DDH diagnosis by misshapen pelvis landmark detection using local–global feature learning. The

technique was name as Pyramid Non-local UNet (PN-UNet). The scheme exhibited good average point-to-point

error. In this regard, a self-created dataset comprising 10,000 X-ray images was investigated. Earlier, the same

authors presented a similar work on the same dataset but using spatial local correlation mining with CNN.

Nonetheless, the later scheme was better in terms of mean absolute error (MAE) .

Such types of automated and AI-based studies have been promising in contrast to the general practitioners’

assessments and surveillance which requires mass screening which is laborious as well as erroneous .
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Likewise, there are several applications of numerical and deep-learning approaches to solve problems in

interdisciplinary areas such as physics , hyperphysical  and healthcare sectors .
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