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Spectral reconstruction of remote sensing images mainly focused on RGB or multispectral to hyperspectral. Spectral

reconstruction methods can be divided into two branches: prior-driven and data-driven methods. Earlier researchers

adopted the sparse dictionary method. With the development of deep learning, owing to its excellent feature extraction

and reconstruction capabilities, more and more researchers are adopting deep learning methods to gradually replace the

traditional sparse dictionary approach.
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1. Introduction

The GF-6 was successfully launched in 2018 as China’s first medium-high-resolution agricultural observation satellite,

which cooperated with GF-1, China’s first high-resolution earth observation satellite that was launched in 2013. It can not

only reduce the time of remote sensing data acquisition from 4 days to 2, but also significantly improve the ability to

monitor agriculture, forestry, grassland, and other resources, providing remote sensing data support for agricultural and

rural development, ecological civilization construction , and other significant needs. GF-6 also realized the localization of

the 8-band CMOS detector and added the red-edge band that can effectively reflect the unique spectral characteristics of

crops .

However, GF-1 was launched earlier and is mission-oriented differently, so it only contains four multispectral bands.

Compared with the GF-6 satellite in Table 1, GF-1 lacks four bands (purple, yellow, red-edge I, and red-edge II bands),

which greatly constrains its development for crop-related joint monitoring. Therefore, researchers try to find a spectral

reconstruction method to reconstruct the lacking four bands.

Table 1. Band specification of the GF-1 PMS and GF-6 WFV images.

GF-1 PMS GF-6 WFV

Band Wavelength (nm) Spatial
Resolution (m) Band Wavelength (nm) Spatial

Resolution (m)

Blue 450∼520 8 Blue 450∼520 16

Green 520∼590 8 Green 520∼590 16

Red 630∼690 8 Red 630∼690 16

Nir 730∼890 8 Nir 730∼890 16

   Red edge 1 690∼730 16

   Red edge 1 730∼770 16

   Purple 400∼450 16

   Yellow 590∼640 16

Pan 450∼900 2    

In recent years, spectral reconstruction mainly focused on RGB or multispectral to hyperspectral. Earlier researchers

adopted the sparse dictionary method . With the development of deep learning, owing to its excellent feature

extraction and reconstruction capabilities, more and more researchers are adopting deep learning methods to gradually

replace the traditional sparse dictionary approach .
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In addition, it should be pointed out that most studies on spectral reconstruction focus on visible three bands (red, green,

and blue) images, while remote sensing images usually contain at least four bands (red, green, blue, and nir). This results

in the lack of one essential nir band as the input, which does not make full use of the original information, thereby leading

to a waste of information. There are already some studies of remote sensing spectral reconstruction considering this

problem . Few studies have been conducted on large-scale and highly complex scenarios such as satellite remote

sensing. On the contrary, most of them have only done performed research in a relatively small area . Most deep

learning methods adopt a lot of up-sampling, down-sampling, and nonlocal attention structure for ground images. Due to

the large-scale, numerous, and complex ground objects of remote sensing images, these structures are difficult to play an

excellent effect in the spectral reconstruction of remote sensing images .

2. Spectral Reconstruction Methods for Remote Sensing Images

Due to the limitations of the hardware resources (bandwidth and sensors), researchers have had to make trade-offs in the

temporal, spatial, and spectral dimensions of remote sensing images. With the problem of low spectral dimension,

researchers mainly used principal component analysis (PCA) , Wiener estimation (WEN) , and pseudoinverse

(PI)  to construct a spectral mapping matrix. In recent years, spectral reconstruction methods have been divided into

two branches: prior-driven and data-driven methods.

The first type is mainly based on sparse dictionary learning, which aims to extract the most important spectral mapping

features. It can represent as much knowledge as possible with as few resources as possible, and this representation has

the added benefit of being computationally fast. For example, Arad and Ben-Shahar  were the first to apply an

overcomplete dictionary to recover hyperspectral images from RGB. Jonas et al.  used the A+ algorithm to improve

Arad’s approach to the sparse dictionary. The A+ algorithm directly constructs the mapping from RGB to hyperspectral at

the local anchor point, and the running speed of the algorithm is significantly improved. The sparse dictionary method only

considers the sparsity of spectral information and does not use local linearity. The disadvantage is that the reconstruction

is inaccurate, and the reconstructed image has metamerism . Li et al.  proposed a locally linear embedding sparse

dictionary method to improve the representation ability of sparse coding. In order to improve the representation ability of

the sparse dictionary, this method only selects the local best samples and introduces texture information in the

reconstruction, reducing the metamerism. Geng et al.  proposed a spectral reconstruction method that preserves

contextual information. Gao et al.  performed spectral enhancement of multispectral images by jointly learning low-rank

dictionary pairs from overlapping regions.

The second type is mainly based on deep learning. With the development of deep learning, a large number of excellent

models have gradually replaced the first method owing to its powerful generalization ability. However, compared to the

first one, deep learning usually requires enormous amounts of data, and the training process takes a lot of computational

time. However, with the increase in computing power, deep learning becomes much more effective, and the related

methods are used by more and more researchers. Xiong et al.  proposed a deep learning framework for recovering

spectral information from spectrally undersampled images. Koundinya et al.  compared 2D and 3D kernel-based CNN

for spectral reconstruction. Alvarez-Gila et al.  posed spectral reconstruction as an image-to-image mapping problem

and proposed a generative adversarial networks for spatial context-aware spectral image reconstruction. In the NTIRE

2018  first spectral reconstruction challenge, the entries of Shi et al.  ranked in first (HSCNN-D) and second

(HSCNN-R) place on both the “Clean” and “Real World” tracks. The main difference between the two networks is that the

former adopts a series method for feature fusion, while the latter is an addition method. The series method can learn the

mapping relationship between spectra very well. Respectively considering shallow feature extraction and deep feature

extraction, Li et al.  proposed an adaptive weighted attention network, which obtained the first rank on the “Clean”

track. Zhao et al.  proposed a hierarchical regression network (HRNet) that obtained first place on the “Real World”

track; it is a 4-level multi-scale structure that uses down-sampling and up-sampling to extract spectral features. In the

processing of remote sensing images, Deng et al.  proposed a more suitable network (M2H-Net) for remote sensing to

meet the needs of multiple bands and complex scenes. Li and Gu  proposed a progressive spatial-spectral joint

network for hyperspectral image reconstruction.
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