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To minimise environmental impact, avoid regulatory penalties, and improve competitiveness, energy-intensive

manufacturing firms require accurate forecasts of their energy consumption so that precautionary and mitigation

measures can be taken. Deep learning is widely touted as a superior analytical technique to traditional artificial neural

networks, machine learning, and other classical time series models due to its high dimensionality and problem solving

capabilities. Despite this, research on its application in demand-side energy forecasting is limited. We compare two

benchmarks (Autoregressive Integrated Moving Average (ARIMA), and an existing manual technique used at the case

site) against three deep learning models (simple Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM),

and Gated Recurrent Unit (GRU)) and two machine learning models (Support Vector Regression (SVR), and Random

Forest) for short term load forecasting (STLF) using data from a Brazilian thermoplastic resin manufacturing plant. We use

the grid search method to identify the best configurations for each model, and then use Diebold-Mariano testing to confirm

the results. Results suggests that the legacy approach used at the case site is the worst performing, and that the GRU

model outperformed all other models tested.
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Introduction

The industrial sector is the largest consumer of delivered energy worldwide and energy-intensive manufacturing is the

largest component in that sector . Energy-intensity is driven by the mix of activity in these sectors including basic

chemical feed-stocks, process (including heating and cooling) and assembly, steam and co-generation, and building-

related energy consumption e.g. lighting, heating, and air conditioning . World industrial energy consumption is forecast

to grow from c. 242 quadrillion British thermal units (Btu) in 2018 to about 315 quadrillions Btu in 2050; the proportion of

energy-intensive manufacturing is forecast to remain at approx. 50\% during that period .

Extant literature has typically (i) focused on supply-side perspectives, (ii) aggregated energy costs, and (iii) failed to

recognise the idiosyncrasies of the energy-intensive manufacturing sector and the associated centrality of energy

management in production planning. There is a paucity of studies in demand-side process-related short-term load

forecasting (STLF) using deep learning and machine learning for energy-intensive manufacturing. The limited studies that

have been published do not compare deep learning performance against widely used machine learning models, classical

time series models, or approaches used in practice. In addition to proposing prediction models, we also address this gap.

In this paper, we focus on performance analyses of deep learning and machine learning models for firm-level STLF

considering energy-intensive manufacturing process of a thermoplastic resin manufacturer. We use energy consumption

and production flow data from a real Brazilian industrial site. In addition to the energy consumption time series, we use

data from two different stages of the thermoplastic resin production process – polymerisation and solid-state

polymerisation. We propose three deep learning models - simple Recurrent Neural Networks (RNN), Long Short-Term

Memory (LSTM) networks, and Gated Recurrent Unit (GRU) - and two machine learning models - Support Vector

Regression (SVR), and Random Forest - for predicting daily energy consumption. These techniques were selected as

they are referenced in the literature on STLF for demand-side energy consumption  . We use the grid search method

to identify the best model configurations. We compare the performance of the deep learning and machine learning models

against (i) a classical time series model, Autoregressive Integrated Moving Average (ARIMA), and (ii) the current manual

approach at the case site. 
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Finding models to predict energy consumption

The data used in this study was sourced from the Brazilian subsidiary of an international thermoplastic resin manufacturer,

an energy-intensive manufacturing plant. Five years of data from 1 January 2015 to 31 December 2019 for daily total

energy consumption at the plant (ENERGY dataset), as well as process-related data for two different stages of the

manufacturing process - polymerisation (POLY_PRODUCTION dataset) and solid-state polymerisation

(SSPOLY_PRODUCTION dataset) were provided. Each dataset comprised 1,826 values. These three series as input in to

the models.

Due to the non-linear characteristics of the datasets used in this research, the need for both accuracy and fast run-times,

and the promising results obtained in other works that used deep learning    , three deep learning techniques were

selected for STLF in this study - simple RNN, LSTM, and GRU. In addition to these techniques, two different machine

learning techniques were selected for the purpose of comparison - SVR, and Random Forest. These were selected as

they feature in related works on STLF for demand side energy consumption  .

To determine the most suitable configuration for each deep learning model and machine learning model, we use the grid

search method to determine the respective hyperparameters     . It is used widely as it is quick to implement,

trivial to parallelise, and intuitively allows an entire search space to be explored .

Deep learning model setting

To perform the grid search, the dataset was separated into a training set consisting of 80% and 20% of the original

dataset, respectively, using the percentage split. The hyperparameters evaluated by the grid search for deep learning

techniques were (i) the number of layers, and (ii) the number of nodes in each layer (see Table 1).

Table 1. Machine learning parameters and levels.

Parameter Levels

Number of nodes From 10 to 90, step 20

Number of layers From 1 to 4, step 1

Figures 1 present the grid search normalised results for RMSE, MAPE, and MAE, respectively. The configuration with one

layer and 30 nodes generated the best models - RNN-1-30, LSTM-1-30, and GRU-1-30 - for all deep learning techniques,

except in one instance where the average MAPE presented the best result for RNN with a configuration of four layers and

30 nodes i.e. RNN-4-30. These four model configurations will be used in our benchmark evaluation.

Figure 1. RMSE, MAPE and MAE grid search result for deep learning models.
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Machine learning model settings

Similar to the deep learning models, we also perform a grid search to find the best hyperparameters of the machine

learning models, using the same data set splitting procedure. The hyperparameters used vary according to the technique

(see Table 2). For SVR, cost and the type of kernel were used whereas the maximum depth of trees and the number of

trees were used for Random Forest.

Table 2. Machine learning parameters and levels.

Technique Parameter Levels

SVR Number of C 0.1, 1 and 10

SVR Type of kernel Linear, polynomial and RBF

Random Forest Number of max. depth From 3 to 6, step 1

Random Forest Number of trees From 50 to 200, step 50

Figures 2 present the grid search results for RMSE, MAPE, and MAE, respectively. For SVR, the best configuration

across the three metrics used - RMSE, MAPE, and MAE - is represented by SVR-0.1-linear, whose C value is 0.1 and

used the linear kernel. For Random Forest, the models with configurations with (a) a maximum depth of three with 50

trees (Random Forest-3-50), (b) maximum depth of six with 50 trees (Random Forest-6-50), and (c) a maximum depth of

six with 100 trees (Random Forest-6-100), generated the best results for RMSE, MAPE, and MAE, respectively. These

four model configurations will be used in our benchmark evaluation.

Figure 2. RMSE, MAPE and MAE grid search result for machine learning models.



Results and discussions

Table 3 presents the RMSE, MAPE, MAE, and inference times results for the four deep learning models (RNN-1-30, RNN-

4-30, LSTM-1-30, and GRU-1-30), and the four machine learning models (SVR-0.1-linear, Random Forest-3-50, Random

Forest-6-50, and Random Forest-3-100) identified by the grid search method, as well as the manual and ARIMA

benchmarks.

Table 3. RMSE, MAPE, MAE, and inference times results for selected analysed model.

Models RMSE MAPE (%) MAE
Inference 
Time (s)

ARIMA 0.0471 3.52 0.0249 56.3565

RNN-1-30 0.0316 4.42 0.0316 0.3896

RNN-4-30 0.0320 4.40 0.0320 0.5939

LSTM-1-30 0.0310 4.37 0.0310 0.6751

GRU-1-30 0.0305 4.33 0.0305 0.7058

SVR-0.1-linear 0.0556 5.09 0.0400 0.0014



Random Forest 3-50 0.0561 4.94 0.0377 0.0043

Random Forest 6-50 0.0573 4.82 0.0356 0.0046

Random Forest 6-100 0.0580 4.83 0.0355 0.0080

Case site technique 0.4119 51.61 0.4039 -

Based on the RMSE metric, the deep learning models outperformed the machine learning models, and the manual and

ARIMA benchmarks. This behaviour can be explained by the ability of deep learning models have to achieve insights

outside of the domain of training data. The GRU model presented the best performance of all models tested as well as

reducing the complexity inherent in the other deep learning models analysed; the simple RNN models presented the worst

performance. In contrast, based on MAPE and MAE, the ARIMA model outperformed the deep learning models, the

machine learning models, and the legacy manual approach. As the values of the RMSE, MAPE, and MAE are very similar,

we used the Diebold-Mariano  test, a hypothesis test used to compare the significance of differences in two different

prediction models and to confirm the results (GRU-1-30 presented de best performance).

With inference times of 0.8 and 0.0085, respectively, the deep learning and machine learning models performed best as a

whole; standard deviations were insignificant. Random Forest-3-50 is the model with the shortest average inference time

of those compared while the ARIMA model is the worst performing when compared to the machine learning and deep

learning models. Although achieving good RMSE, MAPE and MAE results, the ARIMA inference time is much longer than

the deep learning models, a significant limitation for practical use.

Figure 3 illustrate the daily load forecasts for the best deep learning model (GRU-1-30), the manual benchmark compared

against the ground truth data. These clearly show that the proposed deep learning model is similar to the ground truth

data compared to the existing manual technique used at the case site.

Figure 3. Daily load forecasting using GRU- 1-30, case site technique benchmark and ENERGY dataset.

Conclusion and future work

Based on both the grid search results and Diebold-Mariano test results, we found that the all deep learning and machine

learning models outperformed the incumbent manual technique. Furthermore, the GRU  model (GRU-1-30) outperformed

the basic RNN and LSTM models in RMSE (0.0305), MAPE (4.33%), and MAE (0.0305), in a very short inference time

(0.7058 seconds).

This paper highlights the potential of deep learning and ARIMA in energy-intensive manufacturing. The adoption of deep

learning, like all data science technologies, requires overcoming human, organisational and technological challenges

however against intense rivalry, firms may not have a choice.

For near real-time prediction, very short-term load forecasting (VSTLF) may be needed. In such use cases, rapid training

times will be required. Furthermore, medium-term load forecasting (MTLF) may prove fruitful, deep learning training

models may need to be augmented with historic trend data to account for longer seasonal cycles or predictable events.

MTLF may enable new use cases including switches to the more sustainable or lower cost power supply. This may require

ensemble solutions and is worthy of exploration.

The entire article has been published on https://doi.org/10.3390/a13110274. 
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