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Road crack segmentation based on high-resolution images is an important task in road service maintenance. The

undamaged road surface area is much larger than the damaged area on a highway. This imbalanced situation yields poor

road crack segmentation performance for convolutional neural networks.
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1. Introduction

Road crack segmentation has important application value in road maintenance, especially for highways. It is challenging

for road management departments to quickly determine the large-scale technical conditions of asphalt road pavement

because of the rapid increase in road network mileage . Scholars proposed various traditional computer vision-based

road crack segmentation methods before convolutional neural networks became mainstream. Traditional digital image

processing (DIP) methods, such as the Canny edge detector , wavelet transform , and crack index , have been

carried out for crack segmentation. However, these algorithms focus on a small group of pixels and lack an understanding

of the image content. Notably, DIP-based methods are very sensitive to noise , such as shadows and stains, and are

unable to meet the needs of large-scale road maintenance. In the past five years, methods for extracting road cracks via

convolutional neural networks have gradually replaced traditional methods and have become mainstream approaches in

scientific research. Deep learning methods can better preserve the geometry of detected crack patterns, and their

predictions (in terms of the pixels belonging to a crack) have ultimately become more accurate than those of the threshold

method . Therefore, the DIP method is not discussed in the following sections.

With the development of deep learning technology, convolutional neural networks such as ResNet  and DeepLabV3 

have achieved great success in computer vision and have been naturally introduced to the road crack segmentation task.

Due to their powerful ability to learn high-level feature representations, road crack segmentation approaches using

supervised convolutional neural networks have achieved good results. However, most studies have only applied

advanced computer vision methods to the field of road damage segmentation and have not deeply considered the

differences between road cracks and natural images. Compared with the semantic segmentation task involving natural

images, the road crack segmentation task has unique characteristics:

Small targets: According to the latest ″Highway Technical Condition Evaluation Standard JTG 5210-2018″, cracks with

average widths greater than 1 mm should be extracted. Many road crack instances are only two or three pixels wide,

making them much smaller than natural images in datasets such as PASCAL Visual Object Class (VOC), and Microsoft

Common Objects in Context (MS-COCO), even in very high-resolution images.

Imbalance at the sample level: The positive and negative data are imbalanced at the sample level. For example, in the

DeepCrack dataset , the ratio of positive and negative samples is approximately 1:33, and in the HRRC dataset, the

ratio greatly increases to 1:705 at the pixel level. The randomness and sparsity of the positive class are even more

apparent in the engineered HRRC dataset.

Imbalance at the feature level: Driven from samples, imbalance also occurs at the feature level. Deep high-level

features in backbones have more semantic meanings, while shallow low-level features are more descriptive in terms of

content . The gradient generated by a small number of positive features, especially at a deep level, may be

submerged by the gradient generated by a large number of negative features, and the utilized model will have difficulty

achieving enough positive characteristics.
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2. Network Architectures

The fully convolutional network (FCN)  architecture transforms fully connected layers into convolution layers, enabling a

classification network to output a heatmap. A convolutional layer is used after the pooling layer to convert the fully

connected layers in VGG16  and up-sample the predictions back to pixels in a single step. The FCN architecture builds

″fully convolutional″ networks that take inputs of an arbitrary size and produce correspondingly sized outputs with efficient

inference and learning processes.

With an FCN architecture, Chun  proposed a fully convolutional neural network-based road surface damage detection

approach with semisupervised learning. The model is updated by using pseudolabeled images derived from

semisupervised learning methods to improve the performance of road surface damage detection techniques.

The U-Net  architecture achieves very good performance in very different biomedical segmentation applications and

has become one of the most commonly used network structures. The architecture consists of a contracting path to

capture context and a symmetric expanding path that enables precise localization. Using skip connections between the

two parts, U-Net can mix shallow, low-level feature maps obtained from the encoder and deep, semantic features derived

from the decoder. Benefiting from skip connections, the network can better retain low-dimensional features with high

resolution to achieve good results in medical segmentation tasks with rich details, such as boundaries and seams.

With the U-Net architecture, Rodrigo  proposed a novel synthetic dataset and a weakly supervised learning method to

overcome the inaccurate annotation problem and improved the results by up to 12%. Hong  proposed an improved

identification technique based on the U-Net architecture that was enhanced with a convolutional block attention module,

an improved encoder, and the strategy of fusing long- and short-skip connections. This method could effectively predict

highway cracks in unmanned aerial vehicle (UAV) images.

UNet++  alleviates the unknown network depth problem with an efficient ensemble of U-Nets with varying depths,

which partially share an encoder and simultaneously perform co-learning using deep supervision. Furthermore, the skip

connections are redesigned to aggregate features of varying semantic scales at the decoder. These network structures

effectively preserve shallow features and are widely used in medical image segmentation.

With the UNet++ architecture, Yang  proposed a method composed of two stages, crack recognition and crack

semantic segmentation, making it easy to meet the needs of efficient and reliable detection for large-scale collected

images. The fine-tuned VGG16 model in the first stage can accurately identify crack images and avoid the computing

costs incurred by the further processing of non-crack images, and the UNet++ model in the second stage provides pixel-

level semantic segmentation for crack images.

The pyramid scene parsing network (PSPNet)  was proposed to embed difficult scenery context features in an FCN-

based pixel prediction framework. The pyramid pooling module fuses features under four different pyramid scales,

aggregates multilevel context to global context information, and provides global-scene-level information to the developed

model. This architecture exploits the capability of global context information derived from different-region-based context

aggregation through a pyramid pooling module and a suitable strategy to utilize global scene category clues.

A feature pyramid network (FPN)  naturally leverages the pyramidal shape of a ConvNet’s feature hierarchy while

creating a feature pyramid that has strong semantics at all scales. An FPN relies on an architecture that combines low-

resolution, semantically strong features with high-resolution, semantically weak features via a top-down pathway and

lateral connections, thereby developing a top-down architecture to build high-level semantic feature maps at all scales.

With a similar network structure, DeepCrack  resizes, concatenates, and fuses these multiscale feature maps at all

scales, and a guide filter  is used to perform denoising at the feature level before prediction. APLCNet  combines a

channel attention mechanism and a spatial attention mechanism during FPN feature fusion, highlights the attribute

information and location information of cracks, and achieves good results on road crack instance segmentation tasks.

DeepLabV3+  improves the encoder–decoder structure of other approaches. The encoder module encodes multiscale

contextual information by applying atrous convolution on multiple scales, while the simple and efficient decoder module

refines the segmentation results along the target boundary. The Xception model is further explored for the segmentation

task. Deep separable convolution is applied to the ASPP and decoder modules to produce faster and stronger encoder–

decoder networks.
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A high-resolution network (HRNet)  maintains high-resolution representations by connecting high-to-low resolution

convolutions in parallel and strengthens high-resolution representations by repeatedly performing multiscale fusions

across parallel convolutions. HRNet has achieved great success in key point detection, attitude estimation, and

multiperson attitude estimation tasks and exhibits enormous potential for scientific research and applications.

Based on HRNet, Chen  proposed an enhanced version called HRNete by removing the down-sampling operation in

the initial stage, reducing the number of high-resolution representation layers, using dilated convolution, and introducing

hierarchical feature integration. Using HRNet as the backbone, Bai  proposed the robust mask R-CNN, an end-to-end

deep neural network for crack detection and segmentation on structures or their components that may be damaged during

extreme events, such as earthquakes.

3. Imbalance Problem

Libra R-CNN  utilizes a simple but effective framework for balanced learning. It integrates IOU-balanced sampling by

splitting the sampling interval into K bins according to their IOU measures and uniformly selects samples from these bins.

It obtains a balanced feature pyramid by resizing the multilevel features in an FPN, averaging them to obtain an integrate

feature, making refinements with convolutions, and resizing the features to their original sizes. A balanced L1 loss is set

by separating inliers from outliers and clipping the large gradients produced by outliers with a maximum value of 1.0.

A two-stage convolutional neural network  was proposed for road crack detection and segmentation in images at the

pixel level. The first stage serves to remove noise or artifacts and isolate the potential cracks in a small area via a

classification network that is composed of five-layer convolutional neural networks and two fully connected (FC) layers.

The second stage is a U-Net-structured segmentation network that can learn the context of cracks in the detected area. In

this two-step framework, the first network filters out pure negative sample images, and images containing positive

samples are allowed to proceed to the second stage; this approach can reduce the proportion of negative samples.

Focal loss  addresses the class imbalance problem by reshaping the standard cross-entropy loss such that it down-

weights the losses assigned to well-classified examples. Focal loss focuses training on a sparse set of hard examples and

prevents the vast number of easy negatives from overwhelming the detector during training. Two preset hyperparameters

are employed; one is used to reduce the loss contributions provided by easy examples and extend their range, and the

other addresses class imbalance.

Dice loss  considers that predictions are strongly biased toward the background if the area of interest occupies only a

very small region of an image, and a loss function based on the Dice coefficient (related to precision and recall) can

ameliorate this situation. The F1 score considers both the precision and recall of classification models and can

comprehensively describe the performance of a model. The Dice loss is defined as 1 minus the F1 score, which involves

maximizing the value of the F1 score as the optimization condition.

RAO-UNet  proposed a foreground perception optimization method. This method calculates the ratio of the sum of the

probabilities of all pixels predicted as the background to the sum of the probabilities of all pixels predicted as the

foreground in the predicted probability map. This ratio is used as an adaptive parameter for weighted binary cross entropy

(BCE) loss in each batch to improve the performance damage caused by data imbalance.

Generative adversarial networks (GANs)  can extend the data by generating virtual data to solve the data imbalance

problem. This approach has been used to deal with the problem of unbalanced landslide remote sensing data . In Ref.

, crack detection was enhanced by a generative adversarial network. CrackGAN  uses the generator as a

segmentation network and adds a new constraint, generative adversarial loss, to regularize the objective function, which

makes the network always generate a crack-GT detection result. These studies demonstrate the effectiveness of GANs in

combating sample imbalance.

The technique of randomly under-sampling the majority class (RUMC)  involves randomly selecting examples from the

majority class and removing them for the training dataset. The majority-class instances are discarded at random until a

balanced class distribution in the training set is reached.

4. Dataset Situation of Road Crake Segmentation

At present, existing road crack segmentation datasets, such as DeepCrack , CrackForest , and 2StageCrack , are

used by researchers to conduct experiments. The DeepCrack dataset contains 537 images with dimensions of 544 × 384
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pixels. The CrackForest dataset contains 118 labeled images of 544 × 384 pixels. The 2StageCrack dataset, the newest

open-source dataset, contains 1276 images for training and 354 for testing, each with dimensions of 96 × 96 pixels.

5. The Proposed Method

The main idea of researchers' method is inspired by the second law of thermodynamics: heat can be spontaneously

transferred from a hotter body to a cooler body. Researchers hope to establish a similar mechanism during the

convolutional neural network training process to regard precision and recall as body temperature and make them naturally

flow from high to low. Therefore, researchers need to solve three problems: how to determine the direction of the flow,

how to determine the strength of the flow, and how to make the precision and recall flow spontaneously.

To overcome these problems, researchers' proposed method is as follows. (1) Researchers define an adaptive parameter

called PRF, which is associated with precision and recall, to evaluate the gap between precision and recall at a defined

interval. (2) The flow direction is determined according to the positive and negative values of the PRF, and the flow

intensity is determined according to the absolute value of the PRF. (3) To bridge precision and recall at the sample level

and feature level, the sampling method and loss weight are repeatedly adjusted during the whole training process. Finally,

spontaneous flow and a dynamic balance between precision and recall are achieved to narrow the gap between them and

obtain a better trained model. The overall design of the recurrent adaptive network framework is shown in Figure 1.

Figure 1. The overall design of the recurrent adaptive network framework.
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