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Monitoring cognitive workload has the potential to improve both the performance and fidelity of human decision making.

Cognitive workload can be assessed and monitored using cardiovascular measures and voice. Heart rate and blood

pressure signals are combined with voice signal formant features to classify cognitive workload into three levels of

difficulty. The feature level fusion combination is carried out using each heartbeat to synchronize the two data sources.

This allows the subsequent machine learning mechanism to monitor cognitive workload on a beat-by-beat basis.
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1. Introduction

The cognitive workload of personnel in a workforce, especially those involved in safety critical industries, e.g., airline pilots

and air-traffic controllers, is crucial to ensuring both the well being and productivity of the personnel and the broader

safety of the public. Consideration of workload and its management is therefore a crucial aspect of any safety

management system in a safety critical organisation. Assessing and monitoring cognitive workload is, therefore, of great

importance. While there are numerous methods by which to measure workload, e.g., subjective methods,

psychophysiological approaches to cognitive workload monitoring, that use signals such as cardiovascular measures and

electroencephalography (EEG), have recently shown promise in identifying cognitive workload in laboratory settings 

. Increased mental demand is highly correlated with increased cardiovascular reactivity . Various classifier

methods have also been used to recognize different cognitive workload states (reliably high and low workload) based on

combined psychophysiological signal sources . Despite this, going beyond a binary high/low workload

classification has proved to be difficult. The problem might at least partly be methodological. Many current approaches to

monitoring cognitive workload fail to consider the individual variation in responses to workload and this shortcoming has

been highlighted in the literature , though attempts have been made by the authors to address this issue specifically for

cardiovascular measures in . Furthermore, prior work has not taken into consideration combining the cardiovascular

signal with another promising signal source, the individual’s speech even though studies suggest that the speech signal

may be a good indication of the individual’s mental state (e.g., see ).

1.1. Cardiovascular Measures and Speech

Cardiovascular measures are relatively unobtrusive and well suited for the aviation environment where speech

communications is used to solve tasks. Furthermore, with technological enhancements such as wearable devices, these

measures are now becoming even less intrusive than before. Short term fluctuations in task demand affects the

cardiovascular system  and these responses can be objectively identified by monitoring the cardiac muscle or the

vascular system by observing, for example, the heart rate (HR) and the blood pressure and stroke volume .

An alternative way of monitoring cognitive workload is through the speech signal. Whilst not applicable in all

environments, it may be ideal in situations where speech can be captured and communications can be monitored in real-

time without interruptions. Yin et al.  performed a trinary classification task using Mel-frequency cepstrum coefficients

and prosodic features with a speaker adapted Gaussian mixture model. This feature extraction method was extended 

to include targeted extraction of vocal tract features through spectral centroid frequency and amplitude features. In both

instances, a relatively small data set was used for validation where each participant performed reading and Stroop tasks.

These feature extraction and classification schemes indicated a strong relationship between cognitive workload and the

speech signal within the experimental framework of the studies.

Cognitive workload experiments using speech have been carried out for real-life tasks in military flight simulation . This

approach has the advantage of being closer to real operational situations indicating that the technology is suitable for

[1][2][3]

[4][5][6] [7][8]

[9][10][11]

[12]

[13][14]

[15][16]

[7][8]

[17][18]

[15]

[19]

[20]



aviation applications. Mean change in fundamental frequency and speech intensity was used to detect cognitive workload

of the participants, but more detailed speech analysis was not performed. Speech analysis has also been used for related

tasks of affective speech classification. For example, the Interspeech 2014 Cognitive load challenge (Computational

Paralinguistics ChallengE, ComParE)  was based on the same principle. A data set of 26 participants provided speech

recordings and EEG signals during a reading task and a low-, medium-, and high cognitive load level Stroop tasks. The

winning entry used an i-vector classification scheme based on a combined feature set of fused speech streams, prosody

and phone-rate .

Combining different physiological signals may provide a more prominent, detailed cognitive workload monitoring tool .

Most commonly, studies focus on cardiovascular signals combined with electrical brain activity signals either as a pair 

 or grouped with signals such as galvanic skin response  or oculomotor measures . No attempts, to researchers'

knowledge, have been reported investigating the supplemental possibility of cardiovascular and speech signals for

cognitive workload monitoring.

1.2. Related Work on Cognitive Workload Classification

Various pattern recognition methods have been applied to the task of classifying cognitive workload using

psychophysiological measures. It has been pointed out that artificial neural networks are opaque and hard to interpret in

terms of how individual variables interact to predict workload . Classification methods have been used such as

discriminant analysis and support vector machines , as well as logistic regression and classification trees . There is

no indication that other classification methods can provide better results for cognitive workload monitoring .

Recently, however, trinary cognitive workload level classification with cardiovascular signals has been demonstrated with

promising results .

Few studies have used artificial neural networks to classify cognitive workload states in the field of air-traffic control using

combined physiological signals . In particular, multiple psychophysiological measures were combined to

provide high accuracy in classifying at least a limited number of cognitive load states . High binary classification

accuracy was achieved for high and low workload states in air-traffic control using neural networks based on EEG and

electrocardiography (ECG) signals . However, when the training scenario included four and seven different cognitive

load states based both the on complexity and the number of aircraft, the classifier confused adjacent states and was

unable to distinguishing between low and medium or medium and high states. A neural network model based on multiple

EEG channels, HR, and eye-blink measures produced reliable discrimination between low and high workload and was

also able to distinguish between two out of three load-tasks  and neural networks also performed well in distinguishing

high and low workload particularly at small time intervals . It was pointed out however, that whilst promising, EEG is

both complex to use and not easily portable . This work presented a neural network trained on various cardiovascular

measures along with performance-based measures and did not manage to reliably classify different cognitive workload

states. Other examples of multi-modal fusion for cognitive workload assessments can be found in .

1.3. Challenges in Assessing Cognitive Workload

The main challenge of assessing cognitive workload is the latent nature of the variable in question. A close proxy of

cognitive workload is the task difficulty which is typically used when assessing cognitive workload. Albeit close, the

relationship between task difficulty and cognitive workload is complex depending on issues spanning from the nature of

the task to the condition of the individual being assessed. Tasks can rely on one or more senses (e.g., sight and hearing)

and require one or more motor skills (e.g., touch and voice) and be simple or complex in space and/or time. The condition

of the individual brings other variables such as ability and fatigue into the equation.

It has also been known for quite some time now that individuals show different psychophysiological responses to cognitive

workload. Measured voice parameters, for example, were found to be different between individuals with respect to

workload as far back as 1968 . The matter of individual differences has been noted periodically with Ruiz et al. , for

example, claiming that more than a single voice parameter needed to be measured as an indication of workload and

Grassmann et al.  found that integrating individual differences may reduce unexpected variance in workload

assessment. Moreover, research has shown that individual working memory capacity may play a critical role in

determining how individuals react to changes in cognitive workload .

Cognitive workload is also perceived to be a continuous variable although its effect on the individual might be categorical

(i.e., fight-or-flight vs. rest-and-digest). Researchers have, however, struggled with this assessment and many have

reduced the problem of cognitive workload monitoring to a binary classification of high or low workload . How

cognitive workload assessment is developed beyond this dichotomy remains an open research question.
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Measuring and combining many different psychophysiological measures also presents a set of challenges that

researchers have grappled with . Cognitive workload presents differently through the systems being measured (e.g.,

heart-rate, speech or the brain’s electrical activity) so making more than one of these data sources available for the

assessment should make the monitoring more robust and accurate. The most straightforward method of combining

feature sets from different sources would be simply to concatenate them. There are, however, a few issues that need to

be addressed before a concatenated feature set can be successfully used as a pattern recognition classification input.

The sampling rates of the two or more signals might not be the same hence some sort of resampling and alignment needs

to take place. Alignment in time has to be ensured during data recordings as well as their correspondence after individual

feature extraction is concluded.

2. Cognitive Workload Experiments

The cognitive workload experiments are set up so that the relationship between task difficulty and workload is close and

with three difficulty levels to reflect the non-binary approach taken. The amount of data obtained from each individual

should be sufficient in order to model each participant’s response to cognitive workload separately. The data collected are

cardiovascular data and voice recordings, analysed separately and combined in a trinary classification of cognitive

workload.

2.1. Experiment Design and Configuration of Tasks

Figure 1 depicts a chart of the progress of tasks, instructions, self-assessment questionnaires and resting periods

implemented in the experiment. The flow chart depicts all elements included in the experiment such as the OSPAN test

(see ) and reading task, but the focus in this particular entry is on the Stroop tasks.

Figure 1. Chart of the flow of tasks and resting periods for the whole duration of one experiment. Progress Instructions PI

depicts instructions given to the participants in between tasks to be read out loud.

Cognitive workload levels was introduced through the well-established cognitive stimuli word/color task published by

Stroop in 1935 . Throughout the Stroop task a set of either incongruent (e.g., red in blue color) or congruent (e.g., red

in red color) color names appears in front of the participant. In this specific setup the Icelandic color names Blue, Green,

Brown, Red and Pink were used with the last color name of each set always being Black, with 36 (35 + 1) words

appearing in a 6 × 6 matrix on each screen. This design was included to indicate to the researcher, controlling the flow of

the screens, that the participant had finished the current screen j. The participant’s assignment was to say the colors of

the words aloud but not to read the words (of the colors). Three cognitive workload levels were induced with the settings

of congruence, incongruence and time limits as follows:

Level 1—Seven congruent sets of screens with all 36 color names appearing on the computer screen at the same time.

Level 2—Six sets of screens with alternating incongruence levels of 0.3 and 0.7 with all 36 color names appearing on

the computer screen at the same time.

Level 3—Eight sets of screens with one word appearing at a time at randomly timed intervals of 0.75 s and 0.65 s.

Here, the same incongruence set-up was applied as in Level 2 and the same number (36) of color names as in Level 1

and 2.

The number of screens in each cognitive workload level were chosen in advance to ensure approximately the same

duration of levels. The cognitive workload levels were introduced in six different orders to the participants using the Latin

square technique.

The participants were introduced to the task by having them read detailed instructions, appearing on the computer screen,

aloud. As depicted in Figure 1, each of the three Stroop sessions contained the cognitive workload task, self-assessment

questionnaire and resting period, repeated three times for each level with the total number of Jp=21 screens, for each

participant p and the screen index j={1,2,⋯,Jp}.
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The different resting periods and their strategic positions are shown in Figure 1. These periods were designed to ensure

that the participant had sufficient time to recover between tasks and reduce its influence on succeeding tasks.

Participants in the experiment performed on the operation span task (OSPAN). The OSPAN task is a working memory

task that measures the working memory span by having participants solve simple equations and remembering a word at

the same time . In this task, participants read out loud an equation (e.g., is (8×3)+2=25) and answer whether the

equation is correct or incorrect. The equation is followed by a word (e.g., car) that also is read out loud. There are 12 sets

of 3 × 2 words/eq, 3 × 3 words/eq, 3 × 4 words/eq and 3 × 5 words/eq in total. The participants’ task is to remember the

presented words in the correct order for each set. The total number of words to be remembered is 42; hence, the

participants could get a maximum score of 42 and a minimum score of 0. One point was given for a correct word in the

correct order and higher scores indicate higher working memory capacity. The results for the OSPAN task were not used

in the current entry.

2.2. Two Cohorts

The method was developed on two sets of participants: volunteers who visited the laboratory of Reykjavik University

(university cohort) and pilots from a commercial airline, Icelandair, that had just completed a simulation exercise at TRU

Flight Training Iceland (pilot cohort). The university cohort had a total number of P1=97 participants with average age of

25.2 ± 5.78 and a gender ratio of 27.83% male to 72.17% females. The pilot cohort had a total number

of P2=20 participants with average age of 41.35 ± 9.36 and a gender ratio of 90% male to 10% females.
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