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MicroRNAs (miRNAs) are a class of small noncoding RNAs that are approximately 22 nt in length and regulate

gene expression post-transcriptionally. miRNAs play a vital role in both physiological and pathological processes

and are regarded as promising biomarkers for cancer, cardiovascular diseases, neurodegenerative diseases, and

so on. Accurate detection of miRNA expression level in clinical samples is important for miRNA-guided diagnostics.

However, the common miRNA detection approaches like RNA sequencing, qRT-PCR, and miRNA microarray are

performed in a professional laboratory with complex intermediate steps and are time-consuming and costly,

challenging the miRNA-guided diagnostics. Hence, sensitive, highly specific, rapid, and easy-to-use detection of

miRNAs is crucial for clinical diagnosis based on miRNAs. With the advantages of being specific, sensitive,

efficient, cost-saving, and easy to operate, point-of-care testing (POCT) has been widely used in the detection of

miRNAs.

microRNA (miRNA)  point-of-care testing (POCT)  visual detection  portable instruments

1. Introduction

MicroRNAs (miRNAs) are a type of small noncoding RNA with a length of ~21–25 nt that act as regulators of gene

expression at the post-transcriptional level . The miRNA genes are transcribed into hairpin-containing pre-miRNA

by RNA polymerase III, and the long dsRNA precursors are processed by Drosha and Dicer consecutively . The

generated small dsRNAs are loaded onto an argonaute family protein (AGO) to form an RNA-induced silencing

complex (RISC). After loading, the passenger strand of the miRNA duplex exits to produce a single-stranded

mature miRNA, and the mature RISC induces translational repression, mRNA deadenylation, and mRNA decay 

. miRNAs play vital roles in development. miRNAs regulate cellular activities, including cell growth, differentiation,

and apoptosis, and aberrant expression of miRNAs promotes the occurrence and development of diseases. In

recent decades, miRNAs have been implicated in various human diseases. Hence, many studies have attempted

to apply miRNAs to disease diagnosis, and miRNAs show great promise as diagnostic biomarkers, as miRNAs can

not only circulate in the human blood in remarkably stable forms, such as exosomes, but they are also widely

present in other bio-microenvironments, such as urine, saliva, and cerebrospinal fluid . Accurate detection of

dysregulated circulating miRNAs in biofluids is important for miRNA-guided diagnostics in a noninvasive fashion.

There have been many conventional methods for the quantitative detection of miRNAs, such as northern blot,

microarray, RNA-seq and RT-qPCR . Although these traditional methods are relatively highly sensitive and

specific, these approaches also have various limitations. For example, northern blotting and real-time PCR are

sensitive and specific, but they are also labor-intensive and require specialized equipment. Microarray and RNA-

seq are high-throughput methods that allow the simultaneous detection of multiple miRNAs, but they are also
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expensive and require complex data analysis, and these approaches for miRNA detection are performed in a

professional laboratory, which is challenging for the application of miRNA detection in clinical practice. Therefore, it

has driven the development of reliable point-of-care testing (POCT) of miRNAs. Point-of-care testing (POCT) is

defined as testing performed near or in the field of a patient, for whom faster results may lead to changes in patient

care . Recently, POCT has been applied to the quantitative detection of miRNAs and has made rapid progress.

To be more detailed, POCT can provide accurate and ultrasensitive tumor screening results for patients with the

advantages of a no-fuss operation, low cost, and rapidity . At the same time, POCT is also suitable for

resource-limited areas, or even for self-testing. Previous reviews provided valuable information on the evolution of

POCT-detection methods for miRNAs and the applied amplification strategies in POCT for miRNAs . The

development in detection of multiple miRNAs and the new progress in biosensors, microfluidics, and lateral flow

assays (LFAs) for miRNA detection have also been well reviewed .

2. POCT of miRNAs

Point-of-care testing (POCT) is defined as testing conducted near or at the site of the patient, and rapid testing may

improve patient care . POCT can provide accurate and ultrasensitive disease screening results for patients with

the advantages of easy operation, low cost, rapidity, and a visual readout . The development and

validation of POCT for early screening of a series of clinical diseases holds great significance. Moreover, POCT

provides the possibility of medical guidance and disease screening in remote areas. Recently, POCT has been

applied to the rapid and quantitative detection of miRNAs and has made rapid progress. Microfluidics, paper-based

biosensors, portable instruments, and visual detection play important roles in POCT and are very promising

methods for POCT of miRNAs. To date, dozens of specialized strategies of miRNA detection based on

microfluidics and paper-based biosensors have been reported. Microfluidics and paper-based biosensors for

miRNA detection have been well reviewed .

2.1. POCT of miRNAs Based on Portable Instruments

To avoid the need for bulky instruments and auxiliary devices to obtain a high-sensitivity quantitative signal output,

we urgently need a sensing strategy that is controllable, low in cost, and independent of sophisticated equipment

but that can offer automated readouts for disease-related miRNAs. In this section, the researchers introduce the

current situation of the application of off-the-shelf instruments in miRNA detection, analyze and evaluate the

possibility and feasibility of their application, and predict their future development trend. A summary of reported

POCT methods for miRNAs based on portable instruments is presented below (Table 1).

Table 1. The detection methods of miRNAs based on portable instruments. 
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Methods miRNA
Detection

Limit
Samples Time Reference

Personal

glucose meter
miR-21

0.41 nM/

1 million

cells

synthesized miR-21/A549

cell lysates
<2 h

 
miR-21 10 fM synthesized miR-21 <2 h

 

miR-21

miRNA205

2.4 pM

1.1 pM

synthesized miR-21

synthesized miRNA205

<3 h

 
miR-21 3.65 nM

synthesized miR-21

clinical serum samples

from cancer patients

2 h

 
miR-21

60 pM

3 × 10

cells/mL

synthesized miR-21

MCF-7, A549 and HeLa

cell lysates

<3 h

 
miR-21 68.08 fM

synthesized miR-21

urine samples from DIKI

mice

1.5 h

 
miRNA-155 0.36 fM synthesized miRNA-155 >5 h

 miR-21, miR-335,

miR-155, and miR-

122

0.325 fmol synthesized miRNAs

extract from HeLa,

HepG2, MCF-7, and L02

Cells

6 h

[19]

[20]

[21]

[22]

6
[23]

[24]

[25]

[26]



Point-of-Care Testing of microRNAs | Encyclopedia.pub

https://encyclopedia.pub/entry/47573 4/11

Methods miRNA
Detection

Limit
Samples Time Reference

Thermometer miR-21 7.8 nM

synthesized miR-21

HeLa cell lysate

Not

mentioned

 
miRNA-141 0.5 pM synthesized miRNA-141 >8 h

Pressure meter miR-21

7.6 fM

100 cells

synthesized miR-21

A549, MCF-7, HepG2

and HL-7702 cells

20 min

 
miR-21 10 pM Serum 0.5 h

Portable

fluorometer
miR-574-5p 2 ng/μL

RNA extract from 5XFAD

mice
>3 h

Capillary force

meter
miR-21 10 nM Human serum 1 h

 
miR-21

 
MCF-7 cell line 25 min

Smartphone miR-133a 0.3 pM
synthesized miR-133a in

serum
>5 h

 

miRNA-499, miRNA-

133a
10 fM

synthesized miR-133a in

serum
13 h

 let-7a 1.7 fM synthesized let-7a 2.75 h
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2.2. Visual Detection of miRNAs Based on Colorimetry

Visual detection is particularly attractive for POCT because the readout can be read with the naked eye with no

need for instruments. In this section, the researchers summarize recent advances in the visual detection of

miRNAs, mainly focusing on colorimetric methods. The researchers provide an all-sided discussion of the

principles of the methods and rationally evaluate the applicability of these visual detection methods for early

diagnosis based on miRNA detection. A summary of the reported POCT for miRNAs based on colorimetric

methods is presented below (Table 2).

Colorimetric assays provide qualitative or quantitative measurement of targets by measuring color changes with no

need for special instruments. Detecting a change in color can be used to determine the presence or absence of a
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Detection
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Samples Time Reference

human serum

 

miR-133a,

miR-499

1 fM

Synthesized miRNAs

human serum

-

 

miR-21,

let-7a

fM

Synthesized miRNAs

human serum

<2 h

 
miR-21 1.43 pM

Synthesized miR-21

human serum, urine

0.5 h

 
miR-224 1.6 fM

Synthesized miR-224

human plasma

<4.5 h

 
miR-21

100 fM

500 cells

Synthesized miR-21

MCF-7 and L02 cells

>1 h
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miR-

34a

miR-
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