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C-X-C chemokine ligand 13 (CXCL13) and its receptor, CXCR5, make crucial contributions to this process by

triggering intracellular signaling cascades in malignant cells and modulating the sophisticated TME in an autocrine

or paracrine fashion. The CXCL13/CXCR5 axis has a dominant role in B cell recruitment and tertiary lymphoid

structure formation, which activate immune responses against some tumors. In most cancer types, the

CXCL13/CXCR5 axis mediates pro-neoplastic immune reactions by recruiting suppressive immune cells into tumor

tissues. Tobacco smoke and haze (smohaze) and the carcinogen benzo(a)pyrene induce the secretion of CXCL13

by lung epithelial cells, which contributes to environmental lung carcinogenesis. 

C-X-C chemokine ligand 13 (CXCL13)  C-X-C chemokine receptor type 5 (CXCR5)  cancer

tumor microenvironment

1. Introduction

Chemokines are a family of chemotactic cytokines with small molecular weights (8–14 kDa) . Chemokines are

classified into four groups according to the position of the first two cysteines closest to the amino terminus: C, CC,

CXC, and CX3C . Chemokines exert their functions by binding to their receptors, which are seven-

transmembrane guanine-protein-coupled receptors (GPCRs) . Chemokines have important roles in regulating

lymphoid tissue development, immune homeostasis, and inflammatory responses by directing the migration of

leukocytes into the injured or infected tissues . A complex chemokine-chemokine receptor signaling network is

critical to the tumor microenvironment (TME), which makes pivotal contributions to tumor cell proliferation,

migration, invasion, angiogenesis, and evasion of anti-tumor immunity, facilitating tumor initiation, progression, and

metastasis .

2. CXCL13/CXCR5 and Immune Homeostasis

2.1. CXCL13/CXCR5: Genes and Proteins

C-X-C chemokine ligand 13 (CXCL13), also known as B-cell attracting chemokine 1 (BCA-1) or B-lymphocyte

chemoattractant (BLC), was originally identified as a homeostatic chemokine to attract B cells, a minority of T cells,

and macrophages . The human CXCL13 gene localizes on chromosome 4q21 and encodes CXCL13 protein,

which has 109 amino acids, a molecular mass of 12,664 Da, and a crystal structure as below (Figure 1A). The

receptor of CXCL13 is the C-X-C chemokine receptor type 5 (CXCR5), which is also named Burkitt’s lymphoma
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receptor 1 (BLR1) and is defined as a member of the superfamily of seven-transmembrane GPCRs (Figure 1B).

CXCR5 has two transcripts, both localized on the cell membrane , and is expressed by follicular helper T cells

(Tfh) , circulating CD4  T cells , B cells , CD68  macrophages , and tumor cells. Moreover, FANCA-

mediated CXCR5 neddylation is involved in targeting the receptor to the cell membrane, and CXCR5 neddylation

stimulates cell migration and motility .

Figure 1. Crystal structure of CXCL13 and CXCR5. (A). Illustration of the CXCL13 monomer (UniProKB-O43927)

showing domain hits with deep coloration. (B). Illustration of the CXCR5 monomer (UniProKB-P32302) showing

seven transmembrane helixes and domain hits (deeply colored). Structural models were obtained from SWISS-

MODEL (http://swissmodel.expasy.org/repository/. accessed on 15 April 2021).

2.2. CXCL13/CXCR5 Axis

The precise mechanism of how the CXCR5 receptor responds to CXCL13 and mediates signaling activation has

not been fully elucidated. Evidence has demonstrated that CXCR5 interacts with cytosolic and membrane proteins

to form heterodimers and heterotrimers, respectively . CXCR5 couples to cytosolic α, β, and γ subunits of

G proteins to form heterotrimeric guanine nucleotide-binding proteins . After CXCL13 binds to CXCR5, G

proteins dissociate from CXCR5, dividing into G  and G , which stimulate different downstream molecules and

subsequently trigger specific intracellular signal transduction pathways . The intracellular domains, and

probably the transmembrane-spanning domains of CXCR5, are required to activate G proteins . CXCR5 can

also form heterodimers with membrane proteins, such as CXCR4 and Epstein–Barr virus-induced receptor 2
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(EBI2) . The EBI2/CXCR5 heterodimer lowers the affinity of CXCL13 for CXCR5 and reduces the activation

of G proteins, potentially contributing to the alteration of the CXCR5 binding pocket by heterodimer formation .

2.3. Physiological Functions of CXCL13/CXCR5

CXCL13 is abundantly expressed on follicular helper T cells (Tfh), follicular dendritic cells (FDCs), and stromal cells

in the follicles of secondary lymphoid organs (SLOs) and is essential for the development of the B cell zones of

SLOs . SLOs, which include the spleen, lymph nodes, and Peyer’s patches, coordinate antigen-specific

primary immune responses via promoting the interactions between antigen-presenting cells and lymphocytes.

CXCR5 is expressed by mature B lymphocytes , a subpopulation of follicular B helper T cells , and

antigen-bearing dendritic cells (DCs) , which control their migration into SLOs towards the gradient of CXCL13

. CXCR5 regulates Burkitt’s lymphoma (BL) lymphomagenesis, B cell differentiation, and migration 

.

In response to CXCL13 secreted by Tfh, FDCs, or marginal reticular cells (MRC), and peripheral CXCR5  B cells

are recruited into the lymphoid follicles or germinal center (GC) in the SLOs through high endothelial venules

(HEVs) (Figure 2). In the lymphoid follicles, a positive feedback loop mediated by CXCL13 boosts follicle

development and sustains SLOs homeostasis. On one hand, CXCL13 secreted by FDCs upregulates membrane

lymphotoxin α1β2 (LTαβ) on B cells. On the other hand, LTαβ interacts with the lymphotoxin-β receptor (LTβR) on

FDCs and triggers FDC development, mutation, and CXCL13 production (Figure 2).
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Figure 2. Roles of the CXCL13/CXCR5 axis in secondary lymphoid organs. CXCL13, secreted by follicular helper

T cells (Tfh), follicular dendritic cells (FDCs), and marginal reticular cells (MRC), recruits peripheral CXCR5  B cells

into the B cell zone or germinal center (GC) through high endothelial venules (HEVs). In the B cell zone, CXCL13

enhances follicle development and sustains secondary lymphoid organ homeostasis by a positive-feedback loop

with B cells and FDC . CXCR5  Tfh migrate into B cell zones, initiating GC formation and B cell receptor (BCR)

affinity maturation and promoting the differentiation of B cells into antibody-producing plasma cells and memory

cells .

3. CXCL13/CXCR5 and Non-Cancerous Diseases

CXCL13 signaling is involved in multiple diseases and exhibits context-dependent effects in inflammatory

conditions and tumor tissues. Generally, the tertiary lymphoid structure (TLS) will develop in non-lymphoid tissues

within or near the pathological sites when an organism suffers from disorders, including persistent infection,

autoimmune disease, chronic obstructive pulmonary disease (COPD), and cancer (Figure 3) . Structurally,

TLSs have B cell zones, T cell zones, GCs, and HEVs.
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Figure 3. Roles of the CXCL13/CXCR5 axis in the tertiary lymphoid structure (TLS). CXCL13 is aberrantly

expressed in the TLS. CXCL13 attracts CXCR5  Tfh and B cells to the B cell zone or GC, potentiating B cell

maturation and TLS formation . In TLS, B cells’ secret immunoglobulins activate T cells or directly target

cancer cells . Tfh, follicular helper T cells; FDC, follicular dendritic cells; GC, germinal center; HEV, high

endothelial venules; TBM, tingible body macrophages.

CXCL13 is aberrantly expressed and acts as the main orchestrator in TLSs . After viral

infection, type I interferon is produced and can induce CXCL13 production in a population of lung fibroblasts,

driving CXCR5-dependent recruitment of B cells and initiating ectopic germinal center formation . Primary

pulmonary fibroblast-secreted CXCL13 induces the formation of inducible bronchus-associated lymphoid tissue

(iBALT), which drives immune responses to fungal stimulation within the lungs . In one fatal and irreversible

interstitial lung disease, idiopathic pulmonary fibrosis, CXCL13 is produced by CD68- and CD206-positive alveolar

macrophages, and the serum CXCL13 concentration predicts the progression and severity of the disease . In

the lungs of mice and patients bearing COPD induced by chronic cigarette smoke exposure, CXCL13 is elevated in

the lymphoid follicles and mediates the formation of TLS, resulting in chronic inflammation in bronchoalveolar

lavage and destruction of alveolar walls .

In the synovial tissues of rheumatoid arthritis, CXCL13 is produced by PD-1 CXCR5 CD4  T cells . CXCL13 is

also a key regulator of B cell recruitment to the cerebrospinal fluid in acute Lyme neuroborreliosis . CXCL13

participates in TLS formation in some autoimmune diseases, such as primary Sjögren’s syndrome , systemic

lupus erythematosus, myasthenia gravis , and atherosclerosis , but not in rheumatoid arthritis  or acute

Lyme neuroborreliosis . CXCL13 is also highly produced during adipogenesis, and has been shown to be a

differentiation- and hypoxia-induced adipocytokine that exacerbates the inflammatory phenotype of adipocytes

through the induction of the pleckstrin homology (PH) domain leucine-rich repeat protein Ser/Thr specific

phosphatase family 1 (PHLPP1), which regulates AKT activation .
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CXCL13 is upregulated by Helicobacter suis, the most prevalent non-Helicobacter pylori species colonizing the

stomach of humans suffering from gastric disease . CXCL13 is also induced in Helicobacter-related chronic

gastritis and is involved in the formation of lymphoid follicles and the gastric lymphomas of mucosa-associated

lymphoid tissue types . In non-alcoholic fatty liver disease (NAFLD), repressed expression of CXCL13 may

ameliorate steatosis-related inflammation . CXCL13 drives spinal astrocyte activation and neuropathic pain via

CXCR5 , and is critical to preserve motor neurons in amyotrophic lateral sclerosis . Further understanding of

the regulations and functions of the CXCL13/CXCR5 axis will aid the rational design of therapeutics for these

diseases.

4. CXCL13/CXCR5 and Cancer

The CXCL13/CXCR5 axis is involved in the regulation of cancer cell survival, apoptosis, proliferation,

differentiation, migration, invasion, and adaptive immunity, and shows dichotomic anti- and pro-tumor functions in

the TME  (Figure 4). CXCL13 and CXCR5 have important roles in cancer (Figure 5) and

represent potential markers to predict the response to immune checkpoint therapy . These molecules

may also serve as novel targets for the development of preventive and/or therapeutic agents for cancer.

Figure 4. Illustration of the underlying mechanisms of the CXCL13/CXCR5 axis in cell fate determination. The

CXCL13/CXCR5 axis triggers multiple intracellular signal transduction pathways. After CXCL13 binds to CXCR5, G

proteins dissociate from CXCR5, dividing into Gα and Gβγ, thereby inducing different downstream molecular

events . CXCL13 promotes osteogenic differentiation by inhibiting miRNA-23a, inducing ALP activity, and
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calcium node formation . Upregulation of MMPs, N-cadherin, Vimentin, Slug, and Snail, and downregulation of

E-cadherin under CXCL13 treatment enhances tumor cell migration . The CXCL13/CXCR5 axis activates

PI3K/Akt, integrin-β3/Src/Paxillin/FAK, and the DOCK/JNK pathway to induce cell survival, invasion, and

proliferation, respectively . CXCL13 increases the phosphorylation of c-Myc and c-Jun, and upregulates the

transcriptional regulator NFATc3, which binds to the promoter region of RANKL and elevates the expression of

RANKL . ALP, alkaline phosphatase; Ca, calcium; MMPs: matrix metalloproteinase; BAD, Bcl-2 agonist of cell

death; FAK, focal adhesion kinase; DOCK2, dedicator of cytokinesis 2; JNK, c-Jun kinase; RANKL, receptor

activator of NF-kB ligand.

Figure 5. CXCL13 and cancer hallmarks.

4.1. CXCL13 Sources within the Tumor and the Tumor Microenvironment

4.1.1. CXCL13: Cellular Sources within TME

CXCL13 is secreted by multiple populations of cells within the TME, including stromal cells, endothelial cells,

lymphocytes, and tumor cells. FDC, a considerable stromal cell population, is the major producer of CXCL13 in the

GCs . Cancer-associated fibroblasts can convert to myofibroblasts and secrete CXCL13 into the TME upon

hypoxia and TGF-β stimulation . CXCL13 is also produced by human bone marrow endothelial (HBME) cells ,

Tfh that have infiltrated into tumor tissues , PD1  CD8  T cells , the TGFβ-dependent CD103 CD8  tumor-

infiltrating T-cell (TIL) subpopulation , neoplastic T cells , and several types of tumor cells.

4.1.2. CXCL13: Production under Carcinogen Stimulation

[72]

[14][73]

[63]

[64][74]

[75][76]

[77] [78]

[79] + + [80] + +

[81] [75]



CXCL13 in Cancer and Other Diseases | Encyclopedia.pub

https://encyclopedia.pub/entry/16909 8/27

Environmental carcinogens can induce the production of CXCL13. Studies showed that the expression of CXCL13

at both the mRNA and protein levels was increased in B cell areas of lymphoid follicles in the lungs of cigarette

smoke (CS)-exposed mice, and the CS-induced upregulation of CXCL13 was confirmed in patients with COPD.

Interestingly, CS-induced formation of pulmonary lymphoid follicles was blocked by anti-CXCL13 antibodies in

mice, and the absence of tertiary lymphoid organs (TLOs) in bronchoalveolar lavage alleviated the inflammatory

response and destruction of the alveolar walls but did not impact the remodeling of the airway wall .

CXCL13 plays a critical role in environmental carcinogenesis. Wang et al.  screened for abnormal inflammatory

factors in patients with non-small cell lung cancers (NSCLCs) from Xuanwei city in China’s Yunnan Province,

where the wide use of smoky coal resulted in severe household air pollution, and found that CXCL13 was

substantially upregulated in 63 (90%) of 70 Yuanwei patients with NSCLC. In NSCLC patients from control regions

where smoky coal was not used, CXCL13 was overexpressed in 44/71 (62%) of smoker patients and 27/60 (45%)

of non-smoker patients . Benzo(a)pyrene (BaP), a polycyclic aromatic hydrocarbon (PAH) carcinogen found in

tobacco smoking and haze (smohaze) , can be metabolically activated by the production of BaP-7,8-diol-9,10-

epoxides (BPDEs). BPDE reacts with DNA to form adducts at N  of deoxyguanosine (BPDE-N2-deoxyguanosine),

which induces mainly G→T genomic mutations to promote carcinogenesis . We found that BaP induced the

production of CXCL13 by lung epithelial cells in vitro and in vivo. Consistent with these observations, CXCL13 was

shown to be elevated in serum samples of current and former smokers and was associated with lung cancer risk

. CXCL13 induces the production of secreted phosphoprotein 1 (SPP1 or osteopontin) by macrophages to

activate β-catenin and induce an epithelial-to-mesenchymal transition (EMT) phenotype (Figure 6). Deficiency in

CXCL13 or CXCR5 significantly suppressed BaP-induced lung cancer in mice, indicating that CXCL13 plays a key

role in smohaze carcinogen-induced lung cancers . CXCL13 is also upregulated in human colorectal cancer

and is secreted by dendritic cells . The carcinogen azoxymethane, which is catalyzed into methylazoxymethanol

to induce G→A genomic mutations, induces colorectal cancer in vivo. Interestingly, knockout of CXCL13 inhibits

azoxymethane/dextran sodium sulfate-induced colorectal cancer in mice . These data suggest a crucial role for

the CXCL13-CXCR5 axis in cancers induced by environmental factors and could be a novel target for the

development of preventive and therapeutic agents to combat related cancers.
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Figure 6. Schematic representation of smohaze-induced production of CXCL13 in lung cancer.

4.2. CXCL13/CXCR5 and Cancer Hallmarks

4.2.1. CXCL13 and Cell Proliferation

CXCL13 binds specifically to CXCR5, which couples with MEK/ERK to induce cell proliferation . In clear cell

renal cell carcinoma (ccRCC) cells, CXCL13 promotes proliferation by binding to CXCR5 and subsequently

activating the PI3K/AKT/mTOR signaling pathway . The PI3K/AKT pathway also plays a key role in the

CXCL13/CXCR5 axis, promoting colon cancer growth and invasion . The CXCL13/CXCR5 axis promotes the

proliferation and invasion of prostate cancer (PCa) cells by activating JNK, ERK, SRC/FAK, PI3K, and Akt 

. CXCL13 also promotes the proliferation of androgen-responsive LNCaP PCa cells in a JNK-dependent,

DOCK2-independent manner, whereas in androgen-independent PC3 cells, CXCL13-induced proliferation is

dependent on DOCK2 .

4.2.2. CXCL13 and Cell Apoptosis

The CXCL13/CXCR5 axis plays an important role in cell homeostasis, as well as helping leukemic cells escape

apoptosis by regulating chemokine-induced signaling . In breast cancer cells, the decrease in CXCL13 leads to

the decreased expression of CXCR5, p-ERK/ERK, and cyclin D1 as well as the increased expression of cleaved

Casp-9, which is an initiator caspase protease for apoptosis . Moreover, CXCL13/CXCR5 has been

demonstrated to induce significant resistance to TNF-α-mediated apoptosis in B cell lineage acute and chronic
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lymphocytic leukemia (B-ALL and B-CLL) . CXCL13 regulates the phosphorylation of Bcl-2 (at Serine 70),

Bcl-xL (at Serine 62), and BAD (at Serine 112 and 136) in PC3 cells to exert anti-apoptotic effects . CXCR5 may

be involved in the protection of retinal pigment epithelium (RPE) and retinal cells from aging-related photoreceptor

apoptosis . These data demonstrate that the CXCL13/CXCR5 axis can confer the evasion of apoptosis in cancer

cells by modulating p-ERK/ERK, TNF-α, Casp-9, and other signal pathways.

4.2.3. CXCL13 and Cancer Stem Cell (CSC)

Cancer stem cell (CSC) is a type of tumor cell with the abilities of self-renewal, differentiation, and high drug

resistance . IL30 overproduction by prostate cancer stem cell-like cells promotes tumor initiation and

development, which involves increased proliferation, vascularization, and myeloid cell recruitment. Moreover, it

promotes stem cell-like cell dissemination to lymph nodes and bone marrow by upregulating the CXCR5/CXCL13

axis . CXCL13 recruits B cells to prostate tumors to promote castrate-resistant cancer progression by producing

lymphotoxin, which activates an IκB kinase α (IKKα)-BMI1 module in prostate cancer stem cells . The role of the

CXCL13/CXCR5 pathway in the cancer stem cells of other malignancies remains to be investigated.

4.2.4. CXCL13 and Drug Resistance

CXCL13/CXCR5 plays an essential role in drug resistance. In multiple myeloma (MM), CXCL13 secreted by

mesenchymal stem cells (MSCs) confers resistance to bortezomib to MM cells . In 5-fluorouracil (5-Fu)-

resistant colorectal cancer patients, serum CXCL13 is elevated, and a high CXCL13 concentration is associated

with a worse clinical outcome . CXCL13 is significantly increased in diffuse large B-cell lymphoma resistance to

chemotherapy and is involved in tumor progression . CXCR5 is overexpressed in mantle cell lymphoma (MCL),

where it mediates MCL-stromal cell adhesion and drug resistance. The drug resistance of MCL is associated with

increased expression of B-cell activation factor (BAFF), which induces the expression of CXCL13 .

4.2.5. CXCL13/CXCR5 in the Tumor Microenvironment

The CXCL13/CXCR5 axis may have different roles in the TME. In leukemia, prostate, lung, pancreatic, colon, and

gastric cancers, CXCL13 exhibits pro-cancer effects by recruiting B cells , CD68  macrophages ,

regulatory B cells (Bregs) , Treg , and CD40  MDSCs , shaping an immune-suppressive TME to

trigger tumorigenesis and tumor progression (Figure 7A). A few reports regarding breast and lung cancers have

shown that the CXC13/CXCR5 axis attracts B cells and Tfh  to shape the TLS in the peritumoral or tumor

sites (Figure 7B), which is associated with adaptive anti-tumor humoral responses and predicting responses to

PD-1 blockade therapy.
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Figure 7. Roles of the CXCL13/CXCR5 axis in the tumor microenvironment (TME). (A). The CXCL13/CXCR5 axis

plays a crucial role in shaping a complex TME by recruiting multiple types of lymphocytes to beget pro-tumor or

anti-tumor immunity reactions. In the context of pro-neoplastic reactions, the CXCL13/CXCR5 axis attracts B cells

to induce tumor progression, regeneration, and invasion , or recruits CD68  macrophages , Breg

, Treg , and CD40  MDSC  to trigger migration, expansion and tumorigenesis, immune suppression,

and immune escape, respectively. (B). In the circumstance of anti-tumor reactions, the CXC13/CXCR5 axis recruits

B cells and Tfh  to format TLS in the peritumoral or tumor sites, which is associated with adaptive anti-tumor

humoral responses and predicting the response to PD-1 blockade therapy. Additionally, lymphocytes directly or

indirectly dampen tumors by the upregulation of CXCL13 and/or CXCR5 . CLL, chronic lymphocytic

leukemia; LTαβ, lymphotoxin α1β2; LTβR, lymphotoxin-β receptor; CAF, cancer-associated fibroblasts; CAMF,

cancer-associated myofibroblasts; HIF-1, hypoxia-inducible factor 1; TGFβ, transforming growth factor-β; HBME,

human bone marrow endothelial; IL, interleukin; BaP, benzo(a)pyrene; AhR, Aryl hydrocarbon receptor; SPP1,

secreted phosphoprotein 1; PDAC, pancreatic ductal adenocarcinoma; Breg, regulatory B cells; HDC, histidine

decarboxylase; Treg, regulatory T cells; MDSC, myeloid-derived suppressor cells; Tfh, follicular helper T cells; NK

cell, natural killer cell.

4.2.6. CXCL13 and Angiogenesis
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Angiogenesis is a distinguishable characteristic of successful tumor growth in all solid tumors, and CXC

chemokines are pleiotropic in their ability to regulate tumor-associated angiogenesis, as well as cancer cell

metastases . Chronic hypoxia increases the expression of CXCL13 in adipocytes  and promotes the

metastasis of prostate cancer by increasing the expression of CXCL13 in tumor myofibroblasts . Fibroblast

growth factor-2 (FGF2) is a member of the family of the heparin-binding FGF growth factors with pro-angiogenic

activity. CXCL13 inhibits FGF2-induced chemotaxis and proliferation, as well as the survival of endothelial cells,

acting as an angiostatic chemokine . CXCL13/CXCR5 axis also facilitates angiogenesis during rheumatoid

arthritis progression .

4.2.7. CXCL13 and Immunometabolic Responses

An integrated immunometabolic response during negative energy balance is required for host survival, and the

impacts of nutritional status on immune responses remain to be determined. Recent studies have shown that

temporary fasting significantly reduces the number of lymphocytes in Peyer’s patches, whose cellular composition

is conspicuously altered after resuming feeding, with the numbers seemingly restored. In this process, nutritional

signals are necessary to maintain CXCL13 expression by stromal cells . Fasting reduces the numbers of

circulating monocytes, as well as monocyte metabolic and inflammatory activity, while hepatic energy-sensing

regulates homeostatic monocyte numbers via CCL2 production . However, the potential roles CXCL13 plays in

cancer metabolism remain to be investigated.

4.2.8. CXCL13 and Cancer Metastasis

More than 90% of cancer deaths are attributed to metastasis. The intricate interactions of a chemokine and its

receptor play an essential role in tumor metastasis. CXCL13/CXCR5 also participates in the metastasis of multiple

cancers. CXCL13 enhances cancer metastasis signaling in an autocrine or paracrine manner, since it is secreted

by tumor cells or other cell types, such as stromal cells and lymphocytes. In a murine prostate cancer model, which

exhibits PKCε overexpression and Pten deficiency, the release of CXCL13 by tumor cells was upregulated in a

non-canonical NF-κB pathway, boosting tumor cells’ migratory properties . CXCL13 facilitates breast cancer cell

line migratory activity via the nuclear factor kappa-B ligand (RANKL)-Src pathway, which mediates the upregulation

of EMT regulators and matrix metalloproteinase-9 (MMP9) . CXCL13, also secreted by stromal cells,

upregulates the expression of RANKL on stromal cells, promoting tumor cell migration and lymph node metastasis

via the RANK-RANKL pathway . CXCL13 mediates distal metastasis of colon cancer by increasing the

secretion of MMP13 and the activation of the PI3K/Akt pathway .

4.3. Regulation of CXCL13 in Tumors

A series of studies have shed new light on the regulation of CXCL13 and CXCR5 in tumors. RelA, a subunit of the

NF-κB family , directly binds to the CXCL13 promoter and positively regulates the transcription of CXCL13,

while nuclear factor erythroid 2-related factor 2 (NRF2) acts as a negative transcriptional regulator of this

chemokine . CXCR5 was positively regulated by RelA and negatively by p53 , and nuclear raf-1 kinase

regulates the CXCR5 promoter by associating with NFATc3 . P53 homologues, p63 and p73 , utilize the
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same mechanism by which the activity of NFκB is attenuated to reduce the expression of CXCR5 . The aryl

hydrocarbon receptor (AhR), a ligand-activated transcription factor, is translocated to the nucleus under BaP

stimulation and binds to the xenobiotic-responsive element (XRE) in the promoter of CXCL13, positively regulating

the transcription of CXCL13 (Figure 6) .

5. CXCL13/CXCR5 in Several Cancer Types

Mounting evidence demonstrates a high concentration of CXCL13 and/or high expression of CXCR5 in tumor

tissues or tumor cell lines. The CXCL13/CXCR5 axis in both hematological malignancies and solid tumors

mediates multiple intracellular signal cascade reactions and yields various phenotypes responding to the signaling

pathways. In addition, the CXCL13/CXCR5 axis also potentiates the crosstalk between tumor cells and

lymphocytes or non-lymphocytes, shaping a complex TME. The roles of the CXCL13/CXCR5 axis participating in

the malignant tumors are context-dependent, including pro-tumor and anti-tumor activities (Figure 7). On one

hand, CXCL13 attracts immunosuppressive cells to mediate immune suppression or evasion, leading to tumor

progression, while on the other hand, the CXCL13/CXCR5 axis elicits tumoricidal immunity signaling to escape

tumor immunosurveillance in some cancer types  (Table 1).

Table 1. Therapeutic targets associated with the CXCL13/CXCR5 axis in malignancies and the tumor

microenvironment.
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Target
Cancer

Type
Function Approach

In Vivo or In

Vitro
Outcome Refs.

CXCL13
Prostate

cancer

Induction of

prostate cancer cell

proliferation and

migration

siRNA and shRNA;

antibody

In vivo; in

vitro

Inhibiting

tumor growth

and

metastasis

CXCL13
Prostate

cancer

Chemotaxis B cells

into regressing

tumor

Antibody In vivo

Preventing B-

cell

recruitment

into tumor

under

castration

CXCL13 Breast

cancer

Activating

CXCR5/ERK

pathway

Polyclonal antibody In vivo; in

vitro

Attenuating

tumor volume

and growth;
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Target
Cancer

Type
Function Approach

In Vivo or In

Vitro
Outcome Refs.

inhibiting

tumor cell

proliferation

and promoting

its apoptosis

CXCL13
Breast

cancer

Enhancing the

production of

RANKL on tumor

cells and the

interaction between

ILC3 and stromal

cells

Antibody In vivo

Attenuating

lymph node

metastasis

CXCL13
Lung

cancer

Promotion of cell

proliferation;

inducing the

production of SPP1

by microphage

Cxcl13  mice In vivo

Decreasing

the volume of

BaP-induced

tumor

CXCL13 PDAC
Homing B cell into

tumor lesions
Antibody

Mice

harbored

Kras

PDEC
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