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Arginine is an amino acid critically involved in multiple cellular processes including the syntheses of nitric oxide and
polyamine, and is a direct activator of mTOR, a nutrient sensing kinase strongly implicated in carcinogenesis. In
this review, we will discuss arginine as a signaling metabolite, arginine’s role in cancer metabolism, arginine as an
epigenetic regulator, arginine as an immunomodulator, and arginine as a therapeutic target. The different cell killing

mechanisms associated with various cancer types will also be described.

arginine cancer metabolism epigenetics arginine-deprivation therapy ADI arginase

| 1. Introduction

An important step in tumor development is a metabolic adaptation to cope with the demand of rapid cell division as
well as a hypoxia, and nutritionally deprived microenvironmentdl. Different tumors utilize different strategies to
reprogram their metabolic pathways. In so doing, tumor cells expose specific vulnerabilities, which can be exploited
therapeutically. For instance, tumor cells, not their normal counterparts, are “addicted” to certain external nutrients
including amino acids and amino acid starvation therapy has gained significant momentum in recent years2. One
of the most common metabolic defects of tumor cells is the impaired intrinsic ability to synthesize argininel2l,
Targeting exogenous arginine by arginine-metabolizing enzymes such as arginase, arginine decarboxylase and
arginine deiminase (ADI) has received increasing attention as therapies to treat a variety of cancersl4l. There are a
number of excellent reviews on this topicBIEIlZ, |n this review, we will focus on recent progress in understanding
arginine’s role in cancer metabolism as a signaling metabolite, an epigenetic regulator and an immunomodulator.
As much of the knowledge was derived from characterizing arginine-deprived cancer cells, we will also update the

current status of arginine-deprivation therapy.

| 2. Arginine and Signal Transduction

There are at least two ways arginine can transmit signals to the cells. The first is through transporters, solute
carriers (SLCs) (Figure 1). As a cationic amino acid, arginine is mainly imported by two types of SLCs, the cationic
amino acid transporters and the system y + L amino acid transporters82. It is noteworthy that arginine activates its
downstream mTOR signal via lysosomal SLC38A9LY. Arginine is the most consumed amino acid in the inner
necrotic core of tumor mass, indicating its high demand for the survival of tumor cellsl2. Accordingly, tumor cells
frequently overexpress specific types of SLCs such as SLC6A14, SLC7A3, SLC7A9, etc. to meet their high

arginine demand. It should be noted that T cells up-regulate distinct types of SLCs to increase arginine uptake for T
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cell activation and anti-tumor functionsi2213], Thus, targeting the tumor specifically with SCLs, and avoiding those

expressed in T-cell and macrophage (e.g., SLC7A1L, and A2) could be a potential strategy for cancer therapy.

Subsequent to its transport, arginine is able to activate several signal pathways. Chief among them is mTOR
kinase. Arginine is one of only three amino acids that can directly activate mTOR pathway, a major cellular sensor
of nutritional state4l, The other two are glutamine and leucine. As such, arginine has profound impacts on protein
synthesis, lipid synthesis and nucleotide synthesis, three anabolic pathways mediated by mTORLY. |ndeed,
nutrients28ll7. are as important as growth factors in the activation of mTOR. Upon growth factor stimulation,
MTOR can be activated through either PI3K (phosphatylinositol 3-kinase) pathway or MAPK pathway, via the
inactivation of TSC (tuberous sclerosis complex), an mTOR negative regulator28l. Inhibition of TSC converts the
Rheb (RAS homolog enriched in brain) into active form, resulting in the activation of mTORC1 (mTOR complex 1).
There are at least three ways, arginine can activate mTOR. (1) arginine disrupts the interaction between TSC and
mTORC1, thereby activating mTOR12. (2) in the lysosome, arginine interacts with SLC38A9 and v-ATPase,
upstream regulators of mTORC1, leading to the activation of Rag GTPase that is required for recruitment of
mTORC1 complex to the lysosomal surfacel222ll (3) in the cytosol, arginine interacts with CASTOR1(cytosolic
arginine sensor for mTORC1 subunit 1) to disrupt the CASTOR complex, which is a negative regulator of Rag Al22,
allowing Rag A to bind mTORC1 component RAPTOR (Regulatory-associated protein of mTOR) and redistributes
MTORCL1 to the lysosome. This may explain why arginine is such a potent activator of mTOR, and arginine

deprivation leads to immediate inactivation of mTOR.
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Figure 1. Arginine-related signaling pathway

https://encyclopedia.pub/entry/12902 2/13



Arginine Signaling and Cancer Metabolism | Encyclopedia.pub

| 3. Arginine and Epigenetic Regulation

Recent studies showed that arginine can act as an effective epigenetic modulator23, In cancer cells, arginine is a
strong inducer of histone acetylation, globally enhancing the expression of metabolic, mitochondrial and DNA repair
genes. Histone acetylation involves the transfer of acetyl group from acetyl-CoA to histone mediated by HATs
(histone acetyltransferases) and KATs (lysine acetyltransferases), which is counteracted by deacetylation enzymes
such as HDACs (histone deacetylases) and SIRTs (sirtuins). Several enzymes including ACLY (ATP citrate
synthase), ACSS1 (Acyl-coA synthetase short-chain family member 1) and ACSS2 (Acyl-coA synthetase short-
chain family member 2) contribute to the synthesis of acetyl-CoA. In arginine stimulated cells, the acetyl-CoA level
significantly increases so do the expression levels of ACLY, ACSS2 and the majority of HATs and KATs. By
contrast, the expressions of several of the HDACs and SIRTs are decreased. These results together could account
for the increased global histone acetylation observed. Since mTOR is known to activate ACLY and ACSSI24125],
arginine stimulation of histone acetylation is in part attributed to the activation of mTOR. The global increase of
histone acetylation however is not random but has region specificity, which is dictated by several transcription
factors including TEAD4, STAT3 (signal transducer and activator of transcription 3), WT1 (Wilms’ tumor 1) and

TFAM (. mitochondrial transcription factor A).

Conversely, arginine deprivation leads to depletion of a-KG, which has profound effects on epigenetic regulation.
As described above, arginine deprivation immediately affects mitochondrial functions281271281129] with consequent
depletion of mitochondrial metabolites including a-KG. Alpha-KG is a cofactor of jumonji domain C containing
histone demethylases (KDMs). As such, histone methylation generally increases during arginine deprivation. Most
prominent are H3K9me3 and H3K27me3, two repressive marks contributing to gene silencing. These marks
decorate genes involved in mitochondrial functions including OXPHOS, purine and pyrimidine synthesis, DNA
repair, etc. (Figure 2). The consequence of such epigenetic repression is mitochondrial dysfunction, generation of
reactive oxygen species (ROS), DNA damage and slow DNA repair, features which figure prominently in arginine-
deprived tumor cells[28]1271(28],
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Figure 2. Arginine acts as an epigenetic regulator.

| 4. Arginine and Genome Integrity

Sufficient arginine is required for maintaining nucleotide pool and DNA repair capacity. Although arginine is not
directly involved in the synthesis of nucleotide, arginine can be converted to glutamine, proline and serine,
precursors of pyrimidine and arginine abundance affects genome integrity. As described above, arginine augments
the transcription of genes involved in purine and pyrimidine synthesis. In addition, by virtue of activating
MTOR/S6K pathway, arginine promotes the phosphorylation and oligomerization of CAD complex (carbamoyl-
phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase) to enhance pyrimidine synthesis22E1.
On the other hand, both arginine and pyrimidine syntheses require aspartate and they “compete” for this
metabolite. Tumor cells often augment pyrimidine synthesis by suppressing arginine synthesis via epigenetic
silencing of ASS1B2E8] the pasis of arginine-deprivation therapy. As described above, arginine deprivation also
activates ATF4/ASAN which converts aspartate to asparagine causing depletion of nucleotide pool. In this
scenario, the cell death caused by arginine-deprivation can be partially rescued by the addition of aspartate or

nucleotide precursors 22,

In addition to arginine’s ability to epigenetically regulate the transcription of DNA repair genes, arginine affects DNA
repair through the synthesis of polyamines. Polyamines interact with negatively charged DNA and plays a key role

in maintaining the genome stability [34] Polyamine depletion impairs DNA repair[3—5] and sensitizes cancer cells to
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genotoxic reagentsi28l37.  Consistently, arginine deprivation which significantly reduces the polyamine

levels38l synergizes with polyamine inhibitors in the killing of cancer cells8,

As arginine deficiency both depletes nucleotide pool and slows down DNA repair in tumor cells, it is no surprise
that arginine starved tumor cells exhibit extensive DNA damagesEJ27[28] |n ASS1-low pancreatic ductal
adenocarcinoma, arginine deprivation exacerbates the HDAC inhibition-induced downregulation of C-terminal-
binding protein-interacting protein (CtIP), a key protein for homologous recombination, leading to DNA damage and
cell death33], In prostate and pancreatic cancer cells, arginine-starvation induced caspase-independent autophagic
cell death with the appearance of nuclear DNA leakage and chromatin-autophagy (chromatophagy)2d. This is
caused by mitochondrial dysfunction and ROS production in the presence of excessive autophagy. Depletion of
mitochondria or removal of ROS by NAC attenuates the DNA leakage phenotype and cell death!ZZ. In a study of
ASS1-low melanomas, regardless of the BRAF status, arginine deprivation down-modulates FANCD2 and p-ATM,
which are important initiators for DNA double strand break repairl2. Although in this cell type, arginine deprivation
alone does not induce DNA damage, combined treatment with cisplatin increases DNA double breaks, possibly due
to persistent downregulation of DNA repair machinery caused by arginine deprivation. Taken together, arginine
affects nucleotide synthesis/DNA repair in a complex way. The nucleotide insufficiency and down-modulated DNA
repair machinery may underlie the arginine deprivation-induced DNA damage and its deficiency impairs this

process and causes death of tumor cells.

| 5. Arginine and Immunomodulation

Arginine is a crucial immune-modulating amino acid for both innate and adaptive immunity142l |t is involved in
the activation of T-cell via the upregulation of T-cell receptor#3l and accelerating cell cycle progression[3l,
Depletion of arginine has been used by tumor cells to generate an immunosuppressive micro-environment. Cancer
cells release factors (G-CSF, GM-CSF, CCI2, etc.) to convert myeloid cells into immunosuppressive phenotypes

(e.g., MDSC, myeloid-derived suppressive cells, or M2 macrophages)44.

Although the correlation between arginine removal by arginase and T cell suppression has been well established,
how systemic removal of arginine affects the tumor microenvironment and tumor growth remains poorly
understood. In a study of the effect of autophagy on tumor growth, it was found that autophagy-negative (Atg)
mouse released abundant arginase in the serum with consequent systemic depletion of arginine®2. In these mice,
ASS1-low syngeneic murine melanoma cells failed to grow with the infiltration of CD8 positive cells, indicating the T

cell immune response is not severely affected by systemic depletion of arginine.

In another study, when human peripheral blood mononuclear cells (PBMCs) are stimulated by anti-CD3/CD28
antibodies, co-treatment with ADI-PEG20 does not block T cell activation; instead, arginine deprivation sustains the
CD69+ T cells up to 72 hl48l. |n the meantime, the induction of CTLA4 and PD-1 in activated T cells is blunted by
arginine deprivation, and arginine deprivation also prevents Treg cells differentiation. Although arginine deprivation
decreases cell proliferation of activated T cell as shown by previous studies, T cell infiltration is not compromised in

syngeneic models446],
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Increasing evidence shows that arginine deprivation induces autonomous cancer cell death and enhances immune

response. Dietary arginine-restriction offers a promising option for prevention and intervention.

| 6. Arginine Deprivation and Cell Killing

Arginine deprivation suppresses the growth and induces cell death of ASS1-low cancer cells. The general

mechanisms associated with cell killing have been studied in a number of systems (Figure 3).
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Figure 3. Arginine deprivation-induced types of cell death.

6.1. Caspase-Dependent Apoptosis

This is the major mechanism associated with arginine-deprivation induced cell death, which operates in many
cancer types including pleural mesothelioma cells4d, lymphoma cells®8!, pancreatic cancer cellsi23l43 ovarian

cancers®d sarcoma cells®l, T-lymphoblastic leukemia cells®2, liver cancer cells®2 and melanomal®4!.

6.2. Caspase-Independent Apoptosis

Syed N et al. and Kelly MP reported that in some glioma cells and small cell lung carcinoma respectively, arginine
deprivation-induced apoptosis, but it is caspase-independent3l38], The detailed mechanism remains to be

elucidated.

6.3. Caspase-Independent Autophagic Death

Arginine deprivation inhibits mTOR, which is a negative regulator of autophagy. Accordingly, arginine deprivation is
often accompanied by aggressive autophagy. Autophagy is a major means to regenerate arginine, which protects

cells from nutrient stress. However, prolonged arginine deprivation leads to excessive and aberrant autophagy.
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This, coupled with ROS-induced DNA damage, leads to chromatin-autophagy or chromatophagy, where
autolysosome fused with nuclear membrane and “extracts” broken chromatin out of nucleus2, eventually leading
to caspase-independent cell death. This was observed in prostate cancer cells? breast cancer cells28;

hepatocellular carcinoma cells®Z and pancreatic cells28!.

In general, arginine deprivation initially induces autophagy to protect cells from starvation and at the same time,
generates ROS (due to mitochondria impairment) and DNA damages which trigger apoptosis. During this early
phase, an autophagy inhibitor such as chloroquine would increase cell death and enhances the drug efficacies(8l.
For some cancer cells, however, autophagy persists and captures damaged broken DNA, leading to nuclear DNA

leakage and cell death(28l,

6.4. Necroptosis

As described above, arginine-deprivation induces autophagy which initially exerts a protective role and co-
treatment with the autophagy inhibitor, chloroquine, and can facilitate the cell death®2I[48I51I55] |n one study8], it
was shown such a treatment activates RIP kinase cascade, leading to necroptosis. Genetical knock-down of RIP1
or RIP3 or pharmaceutical treatment with necroptosis inhibitor, necrostatin, can protect against the co-treatment

mediated cell death®1l,
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