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SMARCB1 (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1) is

a key component of the SWI/SNF (SWItch/Sucrose Non-Fermentable) chromatin remodeling complexes.

Functional inactivation of SMARCB1 is the only recurrent genetic alteration reported in so far in Epithelioid

Sarcoma (ES), a very rare and aggressive mesenchymal tumor of unclear origin and uncertain lineage

characterized by a prevalent epithelioid morphology.
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1. Introduction

Epithelioid sarcoma (ES) is a very rare (incidence ~0.02–0.05/100,000) mesenchymal tumor characterized by a

prevalent epithelioid morphology . It primarily affects adolescents and young adults, accounting for less than 1%

of all sarcomas in adults and 4–8% of pediatric non-rhabdomyosarcomatous sarcomas . ES is an aggressive

tumor, with a high rate of recurrences (from 15% to 60% in different series) and 30–50% of the cases

metastasizing at distal sites . A molecular hallmark of ES is the loss of SMARCB1 protein

expression.

2. SMARCB1 inactivation in the pathogenesis of Epithelioid
Sarcoma

SMARCB1 (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1),

a.k.a. INI1 (Integrase Interactor 1), is a subunit of the mammalian SWI/SNF (SWItch/Sucrose Non-Fermentable)

ATP-dependent chromatin remodeling complexes, also known as BAF (BRG1/BRM-associated factor) complexes.

These complexes are central regulators of nucleosome remodeling and are implicated in different biological

processes, including cell cycle control and maintenance of genomic stability . Mammalian SWI/SNF

complexes are classified into three subgroups: canonical BAF (cBAF), polybromo-associated BAF (PBAF), and

non-canonical BAF (ncBAF), also called GLTSCR1 or GLTSCR1L-containing and BRD9-containing (GBAF)

complexes  (Figure 1). SMARCB1 participates only into cBAF and PBAF complexes . Notably,

SWI/SNF subunits are mutated in over 20% of all human cancers . In particular, SMARCB1 inactivation is

implicated in the pathobiology of ES, malignant rhabdoid tumors (MRT), atypical teratoid/rhabdoid tumors (AT/RT)
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of the central nervous system, malignant peripheral nerve sheath tumors (MPNST), myoepithelial neoplasms and

renal medullary carcinomas (RMC) .

Figure 1. SWI/SNF chromatin remodeling complexes. SWI/SNF complexes are classified into three subgroups:

canonical BAF (cBAF), polybromo-associated BAF (PBAF), and non-canonical BAF (ncBAF). SMARCB1

participates into cBAF and PBAF complexes whilst is not included into the ncBAF ones.

Over 90% of ES harbor biallelic SMARCB1 deletions or, more rarely, nonsense frameshift and splice site mutations

. In the ES samples lacking obvious SMARCB1 genetic defects, i.e. SMARCB1-intact ES, epigenetic

mechanisms have been proposed to account for SMARCB1 functional inactivation. However, no promoter

methylation was detected , and decitabine treatment failed to restore SMARCB1 expression in these tumors

. microRNAs have been also implicated in SMARCB1 silencing, namely miR-193a-5p, miR-206, miR-381, and

miR-671-5p , although the actual capacity of these microRNAs to inhibit SMARCB1 in the context of ES

cells was not confirmed by independent studies . Therefore, the mechanism underlying the loss of SMARCB1

expression in SMARCB1-intact ES remains to be elucidated.

In SMARCB1-deleted ES cell models, such as the VA-ES-BJ cell line, restoration of SMARCB1 expression induces

cell cycle arrest and impairs anchorage-independent growth and cell migration, substantiating its tumor

suppressive role . The mechanism of action of SMARCB1 as a tumor suppressor relies on the intersection with

several pathways, including cell proliferation and survival     (Figure 2).
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Figure 2. SMARCB1 intersection with relevant pathways. SMARCB1 negatively controls the expression of several

cell cycle-related genes. Moreover, by interacting with MYC or GLI1, it hampers their transactivation activity.

Conversely, the binding to p53 potentiates p53 tumor suppressive activity. The loss of the SWI/SNF subunits

ARID1A, SMARCC1, SMARCC2, and SMARCA4 (in black) has been claimed to play a pathogenic role in the small

fraction of SMARCB1-proficient ES.

SMARCB1 negatively regulates the expression of cyclin D1, E2F, and AURKA and, accordingly, SMARCB1-deleted

tumors show up-regulation of these targets and cell cycle perturbation . SMARCB1 was also

demonstrated to directly bind MYC and to interfere with MYC-mediated transcriptional regulation . Indeed, in

SMARCB1-negative cell lines, SMARCB1 loss associates with enhanced MYC activity and increased DNA

replication . SMARCB1 also binds and potentiates p53 transactivation activity , and favors nucleotide excision

repair by interacting with several components of this machinery, including BRCA1, BARD1 and XPC . This

suggests that SMARCB1 loss may result in impaired control over genome stability. Furthermore, SMARCB1 plays

a role in Wnt/β-catenin and sonic hedgehog (SHH) signaling pathways . In particular, SMARCB1 has been

reported to bind GLI1, a SHH effector, thereby inhibiting the SHH signaling . Finally, a role for SMARCB1 in

regulating the expression of IL6 has been recently proposed  .

Notably, SMARCB1 was documented to repress EZH2 and, accordingly, high levels of EZH2 have been shown in

SMARCB1-deficient tumors, including ES , AT/RT , MRT  and chordomas . EZH2 is a core component

of PRC2 complexes (Polycomb Repressive Complex 2) and catalyzes the methylation of histone H3 on lysine 27

(H3K27) mediating the transcriptional repression of target genes . PRC2 complexes are functional antagonists

of the SWI/SNF complexes, and the balance between the two is key for cellular homeostasis    (Figure

3).
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Figure 3. Functional antagonism between SWI/SNF and PRC2 complexes. SWI/SNF complexes regulate

nucleosome remodeling by promoting sliding or ejection of nucleosomes, thus facilitating gene expression. Instead,

PRC2 complexes induce chromatin compaction and transcriptional repression by catalyzing methylation of histone

H3 on lysine 27 (H3K27).

Concomitant inactivation of EZH2 and SMARCB1 is synthetic lethal. In vitro and in vivo experiments demonstrated

that EZH2 silencing in SMARCB1-deficient MRT cells significantly impaired cell proliferation and triggered cell

senescence, and prevented the formation of tumors driven by SMARCB1 loss in mouse models . Also the

pharmacological inhibition of EZH2 induced strong anti-proliferative effects in SMARCB1-deleted cells and

determined a complete regression of xenografts in mouse . Based on these findings, EZH2-inhibitors have

been proposed as a potential therapeutic strategy in SMARCB1-deficient tumors. In 2013, an open-label,

multicenter, phase I/II trial demonstrated that the EZH2 inhibitor tazemetostat showed antitumor activity in ES .

The study was followed by a phase II, multicenter study (NCT02601950) in 2015: of the 62 ES patients enrolled in

this trial, 15% (9/62) showed durable objective response after 32 weeks of treatment, and 21% (13/62) remained

progression-free at 1 year . These encouraging results led to the accelerated approval by the USA Food and

Drug Administration (FDA) of tazemetostat for the treatment of adults and adolescents over 16 years of age with

locally advanced or metastatic ES not eligible to complete surgical resection. Based on these promising results,

other PRC2 components are currently considered for therapeutic targeting.
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