

April 17: Apollo 13 Returns Safely

Subjects: [Astronomy & Astrophysics](#)

Contributor: Encyclopedia Editorial Office

Apollo 13 was a 1970 NASA Moon mission that turned into a survival crisis after an oxygen tank explosion. The crew, aided by Mission Control, used the Lunar Module as a lifeboat and improvised fixes to return safely. Though the Moon landing was canceled, the mission became a landmark example of problem-solving under pressure.

[Apollo 13](#)

[NASA](#)

[Apollo program](#)

1. Introduction

On April 17, 1970, at 18:07:41 UTC, the Apollo 13 Command Module (CM) *Odyssey* successfully splashed down in the South Pacific Ocean (21°38'S 165°22'W), concluding one of NASA's most critical in-flight emergency operations. This report provides a comprehensive account of the mission, from its intended lunar landing objectives to the catastrophic in-flight anomaly and subsequent recovery, supported by verified data from NASA archives, mission transcripts, and post-flight investigations [\[1\]](#)[\[2\]](#).

Source: Sailors placing the Apollo 13 CM on the deck of the USS Iwo Jima. NASA

2. Mission Overview and Objectives

2.1 Primary Mission Parameters

- Launch Date: April 11, 1970, 19:13:00 UTC (Kennedy Space Center, Pad 39A)
- Crew:

- Commander James A. Lovell Jr. (Fourth spaceflight, previously flew on Gemini 7, Gemini 12, and Apollo 8)
- Command Module Pilot John L. "Jack" Swigert Jr. (Replaced Thomas K. Mattingly II 72 hours pre-launch due to rubella exposure)
- Lunar Module Pilot Fred W. Haise Jr. (First spaceflight)
- Intended Landing Site: Fra Mauro Highlands (Moon)
- Planned Mission Duration: 10 days (with lunar surface operations on April 15–16)

2.2 Scientific Objectives

As the third planned lunar landing, Apollo 13 was tasked with:

1. Deploying the Apollo Lunar Surface Experiments Package (ALSEP) to study moonquakes and solar wind (NASA SP-350, 1975).
2. Conducting geological surveys of the Fra Mauro formation, believed to contain ejecta from the Imbrium impact (Lunar and Planetary Institute, 1971).
3. Testing the Modular Equipment Transporter (MET) for improved mobility during extravehicular activities (EVA).

3. The In-Flight Emergency: April 13, 1970

3.1 The Oxygen Tank Explosion (55:55:20 Mission Elapsed Time)

At 03:07:53 UTC on April 14, following a routine cryogenic oxygen tank stir, Oxygen Tank No. 2 (SM Sector 4) catastrophically failed. Telemetry indicated:

- A rapid pressure loss in both oxygen tanks (from 858 psi to zero within 130 seconds) (NASA Manned Spacecraft Center, 1970).
- Fuel cell shutdowns, leading to a 60% power loss in the Command/Service Module (CSM).

Swigert's initial report to Mission Control:

"Okay, Houston, we've had a problem here." (*Official transcript, NASA Mission Operations Report, 1970*)

3.2 Immediate Consequences

1. Loss of primary propulsion and electrical systems (rendering the CSM inoperable).

2. Critical depletion of potable water and LiOH CO₂ scrubbers (LM reserves were insufficient for three crew members).
3. Trajectory deviation risk, requiring urgent course corrections to ensure Earth re-entry.

4. Recovery Operations and Critical Decisions

4.1 Lunar Module Aquarius as a Lifeboat

At 04:43:00 MET, Mission Control ordered the crew to:

1. Power down the CSM Odyssey to conserve battery capacity for re-entry.
2. Transfer to the Lunar Module (LM) Aquarius, repurposing it as a temporary habitat.

Key Challenges:

- CO₂ Scrubbing: The LM's lithium hydroxide canisters were designed for two crew members for 45 hours. Engineers devised an improvised adapter using CSM canisters, plastic bags, and duct tape (dubbed the "mailbox fix") (NASA Technical Note D-7082, 1971).
- Power Management: Non-essential systems were deactivated, reducing cabin temperatures to 4°C (39°F).

4.2 Trajectory Correction Maneuvers

Two critical burns were executed using the LM Descent Engine (DPS):

1. PC+2 Burn (61:29:43 MET): Adjusted the return trajectory to ensure Earth capture (delta-V: 14.9 ft/s).
2. Final Midcourse Correction (105:18:28 MET): Fine-tuned the entry angle to -6.49° (NASA Mission Evaluation Report, 1970).

5. Re-Entry and Recovery (April 17, 1970)

5.1 Jettison Sequence

Prior to atmospheric entry, the crew:

1. Reactivated the CM Odyssey (successful power-up confirmed at 137:40:00 MET).
2. Discarded the Service Module (SM), revealing a 4-meter panel loss from the explosion (photographic analysis, Johnson Space Center).

3. Separated the LM Aquarius at 142:54:47 MET.

5.2 Atmospheric Entry Profile

- Velocity at Entry Interface (400,000 ft): 36,210 ft/s (11,036 m/s)
- Peak Deceleration: 5.9 g (within predicted limits)
- Blackout Duration: 4 minutes, 37 seconds (longer than nominal due to shallow angle)

5.3 Splashdown and Recovery

- Location: South Pacific Ocean (21°38'S 165°22'W)
- Recovery Vessel: USS Iwo Jima (LPH-2)
- Crew Condition:
 - Haise: Diagnosed with a urinary tract infection due to dehydration.
 - All crew members exhibited mild hypothermia (post-mission medical report, NASA).

6. Post-Mission Investigation and Legacy

6.1 Accident Review Board Findings

The Apollo 13 Review Board (Chairman: Edgar Cortright) identified:

1. Faulty Wiring in Oxygen Tank No. 2: Damaged during a pre-launch test (NASA Report No. 70-029).
2. Inadequate Safety Protocols: No fail-safe mechanism existed for tank overpressurization.

6.2 Programmatic Improvements

Subsequent Apollo missions implemented:

- Redesigned oxygen tanks with Teflon-coated wiring.
- Additional battery and water reserves in the CSM.
- Enhanced emergency simulation training for flight controllers.

6.3 Historical Significance

- Termed a "Successful Failure" by NASA Administrator Thomas Paine for demonstrating crisis management under extreme conditions.
- Cultural Impact: The mission popularized the phrase "Houston, we have a problem" (though the official transcript differs slightly).

7. Conclusion

The safe return of Apollo 13 stands as a testament to human ingenuity, interdisciplinary collaboration, and rigorous contingency planning. The lessons learned directly influenced subsequent spaceflight operations, ensuring higher reliability in later Apollo missions and beyond ^[3].

As Commander Lovell stated in his post-mission debrief:

"The teamwork between the crew and Mission Control was flawless. Every decision was data-driven, and every action had purpose."

References

1. <https://www.nasa.gov/missions/apollo/apollo-13-mission-details/>
2. <https://science.ksc.nasa.gov/history/apollo/apollo-13/apollo-13.html>
3. https://www.lpi.usra.edu/lunar/missions/apollo/apollo_13/

Retrieved from <https://encyclopedia.pub/entry/history/show/129923>