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The metastasis detection in lymph nodes via microscopic examination of H&E stained histopathological images is

one of the most crucial diagnostic procedures for breast cancer staging. The manual analysis is extremely labor-

intensive and time-consuming because of complexities and diversities of histopathological images. Deep learning

has been utilized in automatic cancer metastasis detection in recent years. The success of supervised deep

learning is credited to a large labeled dataset, which is hard to obtain in medical image analysis. Contrastive

learning, a branch of self-supervised learning, can help in this aspect through introducing an advanced strategy to

learn discriminative feature representations from unlabeled images.
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1. Introduction

Cancer is currently one of the major causes of death for people all over the world. It is estimated that 14.5 million

people have died of cancer, and by 2030 this figure is expected to exceed 28 million. The most common cancer for

women is breast cancer. Every year, 2.1 million people around the world are diagnosed with breast cancer,

according to World Health Organization (WHO) . Due to the high rate of mortality, considerable efforts were made

in the past decade to detect breast cancer from histological images so as to improve survival through early breast

tissue diagnosis.

Since lymph node is the first position of breast cancer metastasis, metastasis identification of lymph node is one of

the most essential criteria for early detection. In order to analyze the characteristics of tissues, pathologists

examine tissue slices under the microscope . The tissue slices are traditionally directly observed with a

histopathologist's naked eyes and visual data are assessed manually based on prior medical knowledge. The

manual analysis is highly time consuming and labor expensive due to the intricacies and diversities of

histopathological images. At the same time, highly depending on histopathologist's expertise, workload, and current

mood, the manual diagnostic procedure is subjective and limited repeatability. In addition, in the face of escalating

demands for diagnostics with increased cancer incidence, there is a serious shortage of pathologists . Hundreds

of biopsies must be diagnosed daily by pathologists, thus it is almost impossible to thoroughly examine the entire

slides. However, if only regions of interest are investigated, the chance of incorrect diagnosis may increase. To this

end, in order to increase the efficiency and reliability of pathological examination, it is required to develop automatic

detection techniques.
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However, automated metastasis identification in sentinel lymph node from whole-slide image (WSI) is extremely

challenging for the following reasons: first, the hard imitations in normal tissues usually look similar in morphology

to metastatic areas, which leads to many false positives; second, the great varieties in biological structures and

textures of metastatic and background areas; third, the varied circumstances of histological image processing,

such as staining, cutting, sampling and digitization, enhance the variations of the appearance of image. This

usually happens while tissue samples are taken at different time points or from different patients. Last but not least,

WSI is incredibly huge, around 100,000 pixels × 200,000 pixels, and may not be directly input into any emerging

method for cancer identification. Therefore, one of the major issues for automatic detection algorithms is how to

analyze such a large pixel image effectively.

Artificial Intelligence (AI) technologies have developed rapidly in recent years. Especially in computer vision, image

processing, and analysis, they have achieved outstanding breakthroughs. In histopathological diagnosis, AI has

also exhibited potential advantages. With the help of AI-assisted diagnostic approaches, valuable information about

diagnostics may be speedily extracted from big data, alleviating the workload of pathologists. At the same time, AI-

aided diagnostics have more objective analysis capabilities and can avoid subjective discrepancies of manual

analysis. To a certain extent, the use of artificial intelligence can not only improve work efficiency, but also reduce

the rate of misdiagnosis by pathologists.

In the past few decades, a lot of works for breast histology image recognition have been developed. Early research

used hand-made features to capture tissue properties in a specific area for automatic detection . However,

hand-made features are not sufficiently discriminative to describe a wide variety of shapes and textures. Recently,

a deep Convolutional Neural Network (CNN) has been utilized to detect cancer metastases that can learn more

effective feature representation and obtain higher detection accuracy in a data-driven approach . The primary

factor that may degrade the performance of CNN-based detection methods is the insufficiency of training samples,

which may cause overfitting during the training process. In most medical circumstances, it is unrealistic to require

understaffed radiologists to spend time creating such huge annotation sets for every new application. Therefore, in

order to address the problem of lack of sufficient annotated data samples, it is critical to build less data-hungry

algorithms capable of producing excellent performance with minimal annotations.

Self-supervised learning is a new unsupervised learning paradigm that does not require data annotations. In this

entry, researchers propose a multi-task setting where researchers train the backbone model through joint

supervision from the supervised detection target-task and an additional self-supervised contrastive learning task,

as shown in Figure 1. Unlike most multi-task cases, where the goal is to achieve desired performance on all tasks

at the same time, researchers' aim is to enhance the performance of the backbone model through exploiting the

supervision from the additional contrastive learning task. More specifically, researchers extend the initial training

loss with an extra self-supervised contrastive loss. As a result, the artificially augmented training task contributes to

learning a more diverse set of features. Furthermore, researchers can incorporate unlabeled data to the training

process, since self-supervision does not need labeled data. Through increasing the number and diversity of

training data in this semi-supervised manner, one may expect to acquire stronger image features and achieve

further performance improvement.
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Figure 1. Overview of the proposed architecture.

2. Breast Cancer Detection

In earlier years, most designed approaches employed hand-crafted features. Spanhol et al. demonstrate

classification performance based on several hand-made textural features for distinguishing malignant from benign

. Some works merged two or more hand-made features to enhance the accuracy of detection. In , graph,

haralick, Local Binary Patterns (LBP), and intensity features were used for cancer identification in H&E stained

histopathological images. The histopathological images were represented via fusing color histograms, LBP, SIFT,

and some efficient kernel features, and the significance of these pattern features was also studied in . However, it

needs considerable efforts to design and validate these hand-made features. In addition, the properties of tissues

with great variations in morphologies and textures cannot properly be represented, and consequently their

detection performance is poor.

With the emergence of powerful computers, deep learning technology has made remarkable progress in a variety

of domains, including natural language understanding, speech recognition, computer vision and image processing

. These methods have also been successfully employed in various modalities of medical images for detection,

classification, and segmentation tasks . Bejnordi et al. built a deep learning system to determine the stromal

features of breast tissues associated with tumor for classifying Whole Slide Images (WSIs) . Spanhol et al.

utilized AlexNet to categorize breast cancer in histopathological images to be malignant and benign . Bayramoglu

et al. developed two distinct CNN architectures to classify breast cancer of pathology images . Single-task CNN

was applied to identify malignant tumors. Multi-task CNN has been used for analyzing the properties of benign and

malignant tumors. The hybrid CNN unit designed by Guo et al. could fully exploit the global and local features of

image, and thus obtain superior prediction performance . Lin et al. proposed a dense and fast screening

architecture (ScanNet) to identify metastatic breast cancer in WSIs . In order to fully capture the spatial

structure information between adjacent patches, Zanjani et al.  applied the conditional random field (CRF),

whereas Kong et al.  employed 2D Long Short-Term Memory (LSTM) on patch features, respectively, which are

first obtained from a CNN classifier. As the limited number of training samples in medical applications may be

insufficient to learn a powerful model, some methods  transferred deep and rich feature hierarchies

learned from a large number of cross-domain images, for which training data could be easily acquired.

3. Self-Supervised Contrastive Learning
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Self-supervised learning is a new unsupervised learning paradigm. Recent research has shown that, by minimizing

a suitable unsupervised loss during training, self-supervised learning can obtain valuable representations from

unlabeled data . The resulting network is a valid initialization for subsequent tasks.

The current revival of self-supervised learning started with intentionally devised annotation-free pretext tasks, such

as colorization , jigsaw puzzle solving , relative patch prediction , and rotation prediction . Although

more complex networks and longer training time can yield good results , these pretext tasks more or less

depend on ad-hoc heuristics, limiting the generality of learnt representations.

Contrastive learning is a discriminative technique that uses contrastive loss  to group similar instances closer

together and dissimilar instances far apart from each other , as indicated in Figure 2. Similarity is

defined in an unsupervised manner. It is usually considered that various transformations of an image are similar

. Ref.  employed domain-specific knowledge of videos to model the global contrastive loss. Authors in 

 maximized mutual information (MI) between global and local features from different layers of an encoder

network, which is comparable to contrastive loss in implementation . Some works utilized memory bank  or

momentum contrast  to obtain more negative samples in each batch. MoCo , SimCLR , and SwAV 

with modified algorithms generated similar performance with the state-of-the-art supervised method on the

ImageNet dataset .

Figure 2. The core idea of contrastive learning: pushing the representations of original and transformed images

closer together while separating the representations of original and different images far apart from each other.
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