
Bacterial Biofilm Formation and Pathogenesis | Encyclopedia.pub

https://encyclopedia.pub/entry/14417 1/12

Bacterial Biofilm Formation and Pathogenesis
Subjects: Agriculture, Dairy & Animal Science

Contributor: Arun Bhunia

Biofilm formation is an integral part of the microbial life cycle in nature. In food processing environments, bacterial

transmissions occur primarily through raw or undercooked foods and by cross-contamination during unsanitary

food preparation practices. Foodborne pathogens form biofilms as a survival strategy in various unfavorable

environments, which also become a frequent source of recurrent contamination and outbreaks of foodborne illness.

biofilm  pathogenesis  food safety

1. Introduction

Most microbes found in nature exist in biofilms, a well-structured, dynamic, diverse, synergistic and protective

microbial community . Biofilm formation (Figure 1) on a solid surface is a natural survival strategy of a microbial

cell to compete efficiently with others for space and nutrients and to resist any unfavorable environmental

conditions. The solid surface may be biotic (meat, produce, oral cavity, intestine, urogenital tract, skin, etc.) or

abiotic (floors, walls, drains, equipment, or food-contacting surfaces). Microbes adhere to surfaces by producing an

extracellular polymeric substance (EPS) forming a three-dimensional biofilm scaffold. Metaphorically, EPS is the

“house” that covers and protects bacteria in biofilms . Although biofilm architecture is solid, protecting bacteria

from physical impact, most of the biofilm is still made up of water . EPS makes up the majority of the total dry

mass of biofilms. Approximately one-third of the biofilm’s dry weight is bacterial cells, and the remaining weight

comes from bacteria-derived molecules, such as polysaccharides, proteins, and DNA, that make up the EPS .

Biofilms can be comprised of single-species or mixed-species cultures. The composition of bacteria in biofilms is

also affected by surface materials, growth conditions, and biofilm maturity . In the food processing environment,

biofilm formation threatens food safety since pathogens can be directly transmitted through contact. After

transmission, pathogens can also form biofilms on food surfaces. For instance, Listeria monocytogenes found on

cantaloupe skin caused a multistate outbreak in 2011 .
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Figure 1. Schematic showing the different stages of biofilm formation (i) attachment, (ii) microcolony formation, (iii)

maturation with cellular differentiation, and (iv) detachment or dispersion, and participation of bacterial virulence

factors in each step. Abbreviations: ActA, actin polymerization protein; Bap, biofilm-associated protein; bcsA,

bacterial cellulose synthesis; CidA, cell death effector protein; csg, curli synthesis gene; EPS, extracellular

polymeric substance; eDNA, extracellular DNA; FnBP, fibronectin-binding proteins; icaA, intercellular adhesion;

LAP, Listeria adhesion protein; PIA, polysaccharide intercellular adhesin; SasG, S. aureus surface protein G;

SpA, S. aureus protein A. Figure adapted with permission from Ray and Bhunia 2014 .

Microbial attachment and biofilm formation on solid surfaces provide the advantages of living in a protective

scaffold against desiccation, antibiotics, or biocides (sanitizers), ultraviolet radiation, metallic cations, and physical

impact from washing and cleaning. For instance, Martins et al.  recently showed that urinary tract infections

caused by Staphylococcus saprophyticus were more resistant to several antibiotics in their biofilm status compared

to their planktonic form. Likewise, biofilms of a commonly used model food spoilage bacterium Lactobacillus

plantarum were more resistant to several biocides, including organic acids, ethanol, and sodium hypochlorite, than

in its planktonic state . Bacteria can acquire and/or exchange genetic materials in biofilms. DNA (plasmid)

exchange can take place in biofilms through conjugation and transformation . In addition, extracellular DNA

can retain the electron shuttle molecule that is critical for redox cycling in biofilms .

Pathogen transmissions occur primarily through raw uncooked or undercooked foods and by cross-contamination

during unsanitary food preparation practices. Pathogens find a harborage site or niche in food production facilities

or product surfaces by forming biofilms . These niches serve as a major source of foodborne outbreaks,

especially in cafeterias, hospitals, cruise ships, and commercial food processing facilities. For example, the

ubiquitous existence of L. monocytogenes in nature gives it numerous routes to be introduced in a food processing
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environment with various fresh produce or raw materials . Once L. monocytogenes finds a niche in a food

processing facility, it can attach to several abiotic surfaces, such as stainless steel, PVC, and polystyrene, and start

to form biofilms, which can be resistant to sanitation and may lead to recurrent food contamination .

Repeated sampling of multiple food processing environments showed that similar L. monocytogenes strains can

persist for a few months and up to 12 years . The persistence of certain L. monocytogenes isolates in the food

processing environment may also be due to the same strains that were consistently introduced by raw materials, or

because of ineffective sanitation practices .

2. Bacterial Virulence Factors that Contribute to Biofilm
Formation and Pathogenesis

Biofilm formation occurs in several stages: (i) attachment, (ii) microcolony formation, (iii) maturation with cellular

differentiation, and (iv) detachment or dispersion ( Figure 1 ). In biofilms, microorganisms produce fimbriae, curli,

flagella, adhesion proteins, and capsules to firmly attach to a surface . Cells grow in close proximity and cell-to-

cell communication (quorum sensing, QS) occurs through the production of autoinducers such as N-acyl

homoserine lactone (AI-1) or other molecules, which also regulate gene expression for survival, growth, cell

density, resistance to antimicrobials, tolerance to desiccation and pathogenesis . Understanding the

mechanism of quorum sensing in biofilm formation provides an opportunity for the application of appropriate QS

inhibitors to control infection and pathogenesis . As a microcolony continues to grow, cells

accumulate forming a mature biofilm with three-dimensional scaffolding. Loose cells are then sloughed off from a

mature biofilm and convert into planktonic cells, which start the life cycle of a biofilm again by attaching to new

biotic and/or abiotic surfaces. The cells from biofilms could become a continuous source of food contamination .

Virulence factors that are involved in both biofilm formation and pathogenesis are discussed below for L.

monocytogenes, Staphylococcus aureus, Escherichia coli, Salmonella enterica, and Pseudomonas aeruginosa.

Listeria adhesion protein (LAP), an adhesion protein , has been indirectly attributed to the formation of biofilm (

Table 1 ). Our group has recently shown that recombinant Lactobacillus casei expressing LAP from L.

monocytogenes or L. innocua on the bacterial surface showed aggregation and increased biofilm formation on a

microtiter plate . In a mouse model, these bioengineered strains also formed thicker biofilms on colonic villi than

wild-type Lactobacillus casei ( Figure 2 ). Although the function of LAP in the pathogenesis of L. monocytogenes

has been well documented , results from recombinant Lactobacillus casei highlights the role of LAP in biofilm

formation as well.

Table 1. Bacterial factors involved in biofilm formation and pathogenesis.
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Bacteria Factors Function Refs
Biofilm Formation Pathogenicity  

Listeria
monocytogenes

ActA (actin
polymerization

protein)

Bacterial sedimentation and
aggregation

Rearrange host
cytoskeletal

structure and
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Bacteria Factors Function Refs
Biofilm Formation Pathogenicity  

promote the cell-
to-cell spread

LAP (Listeria
adhesion
protein)

Expression in
recombinant Lactobacillus enhanced

biofilm formation

Epithelial adhesion
and translocation

through the
epithelial barrier

PrfA (protein
regulatory

factor)

Regulate the expression of ActA that
is necessary for biofilm formation

Regulatory protein
that regulates the

synthesis of
multiple virulence

factors

WTA (wall
teichoic acid)

Maintain cell wall (peptidoglycan)
architecture and participate in

biofilm formation

Induce
inflammatory

response

Staphylococcus
aureus

Bap (biofilm-
associated

protein)

Adhesion to inert surfaces and
intercellular adhesion in the

development of biofilm formation

Establish
persistent infection

on a mouse
infection model

Protein A
Cell-to-cell adhesion in biofilm

development; a major proteinaceous
component in S. aureus biofilms

Help S. aureus to
evade immune
system in vivo

PIA
(polysaccharide

intercellular
adhesin)

Cell-to-cell binding in biofilm
formation

Establish
persistent in vivo

infection

Teichoic acid
Maintain cell wall (peptidoglycan)

architecture and participate in
biofilm formation

Induce
inflammatory

response

FnBP
(fibronectin-

binding
proteins)

Cell-to-cell adhesion through low-
affinity homophilic interaction

between neighboring cells

Promote bacterial
attachment to host

fibronectin for
adhesion and
colonization

SasG (S.
aureus surface

protein G)

Zinc activated SasG-mediated
biofilm formation

Adhesion to
epithelial cells

Salmonella enterica
Fimbria
(SEF17)

Cell-to-cell interaction in biofilm
formation

Bind to human
fibronectin and

facilitate cell
invasion
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Bacteria Factors Function Refs
Biofilm Formation Pathogenicity  

Bap (biofilm-
associated

protein)

Bap and curli can help form strong
biofilms in both biotic and abiotic

surface

Colonization,
intestinal

persistence,
invasion to liver
and spleen and
lethality in mice

CsgD, BcsA Curli and cellulose synthesis

Colonization,
biofilm formation

and vertical
transmission to

egg

Escherichia coli

Curli made with
CsgA and

CsgB
Adherence to abiotic surfaces

Adhere to
epithelial cells

when over
expressed

Fim (fimbriae) Biofilm formation on polystyrol
Adhesion to

epithelial cell lines

Enteroaggregative E.
coli (EAEC)

Aggregative
adherence

fimbriae (AAF)

Mediate biofilm formation on abiotic
surfaces

Bind to MUC1 on
epithelial cells

Pseudomonas
aeruginosa

PqsR
A key component

of Pseudomonas quinolone signal
system

Regulate the
production of

virulence factors,
pyocyanin and

hydrogen cyanide

Flagellum
Swimming motility and biofilm

formation

Flagella is an
important virulence

factor. The
flagellum-deficient
strain showed less

invasion in the
mouse burn

wound model and
less colonization in

the murine
intestine

Type IV pili
Twitching motility, and adhesion to

abiotic surfaces

Adhesion to
eukaryotic cells

and pathogenesis
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Figure 2. Biofilms formed (above) by recombinant Lactobacillus casei (Lbc) expressing Listeria Adhesion Protein

(LAP) from L. monocytogenes (LbcLAP ) or nonpathogenic L. innocua (LbcLAP ) on mouse colonic villi after

feeding for ten days (arrows). The wild-type Lactobacillus casei (LbcWT) did not show any biofilm formation (left

panel). Bar, 25 µm. The figure was adapted with permission from Drolia et al. 2020 .

As one of the pathogens causing the most gastroenteritis cases around the world, E. coli is a model bacterium that

forms biofilm after well-programmed production of various extracellular molecules . Curli and cellulose are two

major components making up the extracellular matrix .

In addition, in mixed-culture biofilms of P. aeruginosa and S. aureus, the presence of the latter organism can also

increase exotoxin A expression , indicating that expression of virulence genes by one species in biofilms can

be altered by the presence of another species.

3. Conclusions and Future Perspectives

In summary, multifunctional molecules involved in both bacterial pathogenesis and biofilm formation demonstrate a

close connection between the two aspects. In L. monocytogenes, ActA rearranges actin in the host cell cytosol to

propel cell-to-cell movement and also initiates biofilm formation by precipitating bacteria. Likewise, teichoic acids

responsible for maintaining Gram-positive bacterial cell architecture also induce inflammatory response during

infection and contribute to biofilm formation in both L. monocytogenes and S. aureus. Protein A of S. aureus not

only helps the pathogen to evade the immune system but also facilitates cell-to-cell adhesion in biofilm

development. Other proteins, including FnBP, SasG, and Bap, are also responsible for biofilm formation and

pathogenesis in S. aureus. Curli is critical for biofilm formation and pathogenesis in E. coli. Similarly, curli and Bap

are important in biofilm formation, intestinal colonization, and pathogenesis in gastroenteritis-causing non-typhoidal

Salmonella. In Pseudomonas, PqsR plays a key role in the Pseudomonas quinolone signaling system and also

regulates the production of virulence factors promoting bacterial biofilm formation and attachment to host

epithelium. Other factors including flagella and type IV fimbriae are important in biofilm formation and colonization

Lm Lin
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on epithelial cells. Many of the virulence factors that are involved in biofilm formation and host cell colonization

have redundant functions, suggesting that even in the absence of one factor, bacteria can still form biofilms that are

food safety and public health concerns.

Although the pathogenesis of multiple foodborne pathogens has been comprehensively studied, most of the results

were generated using planktonic cultures under laboratory conditions. The actual risk of consuming pathogens

from biofilms should be further characterized using animal models instead of only in vitro cultured mammalian cell

models or virulence factor expression analyses. Recently, we used L. monocytogenes as a model foodborne

pathogen to investigate the virulence of the bacteria in biofilms. Our data indicate that the virulence of biofilm-

isolated L. monocytogenes was upregulated after 48 h bacterial adaption to the intestinal environment. These

findings enhanced our understanding of bacterial pathogenesis of biofilm-isolated bacteria, and these data should

be beneficial for the accurate evaluation of biofilm risks in food processing environments. Similarly, the assessment

of the pathogenicity of other foodborne pathogens, such as E. coli and Salmonella, isolated from biofilms could

also be further investigated using animal models. Using bacteria isolated from biofilms could also be a good model

for studying bacteria switching from a saprophytic lifestyle to pathogenic status in animal hosts.

Although there are many studies of biofilm formation on plastic, stainless steel, or glass surfaces, more in-depth

studies are needed of foodborne pathogen biofilms formed directly on food surfaces, for example, cantaloupe skin

or eggshell. Bacteria isolated from these biofilms should represent a more realistic model to assess the risk of

consuming foodborne pathogens found on food surfaces.
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