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Vascular tissue engineering (VTE) lies at the intersection of several emerging disciplines including material science,

polymers, stem cell biology, and fabrication technologies to support the development of micro/macroscopic artificial and

bioartificial vessels.
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1. Introduction

Vascular malfunctions contribute to various maladies and have emerged as a leading cause of global mortality.

Specifically, as much as 32% of deaths worldwide were attributed to cardiovascular diseases (CVD) in 2019 alone . At

the same time, CVD and associated risk factors are causing substantial morbidity in patients worldwide . Current

treatments for CVD include medications, surgery, medical implants, mechanical devices, and rehabilitation .

Moreover, conventional surgical procedures such as grafting bypass, improve vessel patency, and vascular repair treats

more severe conditions of CVDs, e.g., stroke and heart attack . Specifically, innovative approaches like vascular tissue

engineering (VTE) have been intensively explored to address the pathophysiology underlying CVD progression and

improve the overall life quality of CVD patients through the direct replacement of damaged vessels .

Currently, VTE lies at the intersection of several emerging disciplines including material science, polymers, stem cell

biology, and fabrication technologies to support the development of micro/macroscopic artificial and bioartificial vessels 

. Different classes of vascular tissue equivalents have been successfully developed as potential replacements for

damaged or malfunctioning blood vessels through advancements in human cell biology and cardiovascular physiology .

To engineer such artificial blood vessels for in vivo transplantation in patients or in vitro models of vascular

pathophysiology, appropriate polymeric materials, cell culture technology, controlled microenvironment, and additive

manufacturing are required to develop vascular scaffolds with varied complexity .

Several natural and synthetic polymers have been applied to fabricate biodegradable and biocompatible vascular

scaffolds through combinations of chemical processing and manufacturing technologies such as hydrogelation , 3D bio-

printing, electrospinning, casting/molding, laser degradation, phase inversion, sheet-based fabrication, medical textile

(braiding/weaving/knitting), and gas foaming . For instance, vascular scaffolds composed of poly(ε-

caprolactone) (PCL) and collagen fabricated by electrospinning has shown higher durability than sole-PCL/poly (lactide-

co-glycolide (PLGA) scaffolds . The PCL/collagen composite scaffolds could bear long-term high pressure caused by

loaded-volume blood flow and provide a favorable environment for vascular cell growth .

Scientists have also used poly-L-lactic acid (PLLA)/PCL added with heparin to create small-scale vessel substitutes

through electrospinning and extrusion . Apart from these examples, other polymers such as PU , gelatin ,

chitosan , PVA , PEG , PLCL , PGA , and PET  have been utilized to create multi-scale blood

vessel replacements. The general strategy combines two or more of those polymers and fabricates them via the

techniques above . Moreover, these polymer-based tissue-engineered vascular grafts (TEVG) have enhanced

biomechanical properties, which can better withstand in vivo blood pressures and establish sustainable cellular

environments over long periods. Nevertheless, TEVGs must mechanically match the region of interest for transplantation

purposes to provide the necessary degree of structural integrity, biocompatibility, biodegradability, and physiology

functions . Based on the numerous conditions that must be satisfied, research is still required to optimize TEVG

technologies.
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2. Characterization of Synthetic TEVGs in Clinical Use

Polyethylene terephthalate (PET, Dacron), expanded polytetrafluoroethylene (ePTFE), and polyurethane (PU) are the

three major TVEGs that are invested in clinical use . Clinically available Dacron grafts are fabricated via either

weaving or knitting in an over-and-under pattern, leading to minimal porosity and creep . Dacron is stable and can

persist for more than 10 years after implantation without significant deterioration when applied as macro-scale vascular

replacements. They have poor clinical performance and cause thrombus, inflammation, and compliance mismatches

when used as small-diameter vascular grafts . The compliance of current commercial Dacron TEVGs is 2.0 × 10 %

mmHg  with 42% of two-year patency .

Polytetrafluoroethylene (PTFE) was patented first in 1937 as Teflon. Expanded ePTFE (Gore-Tex) is the material

employed on vascular grafts and manufactured using heating, stretching, and extruding processes, creating a

microporous scaffold for firm cell adhesion . An ePTEE vascular graft is non-woven, with a node–fibril structure, and

performs well as aortic replacements having a 5-year primary patency rate of 91% to 95% but a lower patency rate for

being analogs of substitutes with small ID . The compliance of ePTEE is 1.5 × 10 % mmHg  with 42% of two-year

patency . Specifically, both Dacron and ePTEE can be bonded to heparin . Heparin-bonded ePTFE aortic grafts

presented decreased thrombogenicity and enhanced patency rates at 8 weeks . Heparin-bonded Dacron grafts are

commercially available in Europe . Significantly, the heparin-bonded Dacron showed promising wide application of

SDVGs such as femoropopliteal bypass grafting, with eye-catching patency rates at 1, 2, and 3 years of 70%, 63%, and

55%, respectively .

Researchers prefer using PU for microcapillary scaffolds due to their microstructure . Polyurethanes can be divided into

fibrillar or foamy structures, and both tend to lack communicating spaces for potential capillary ingrowth . In

microporous foamy PU with a 15 μm pore size, relatively little capillary ingrowth can be achieved. Whereas once the pore

size increased up to 157 μm, capillary sprouting occurred . Although PU grafts possess many exciting features, such

as EC growth under inferior hemodynamic conditions, excellent healing, subtle surgical handling, and low suture bleeding,

sufficient evidence of the spread use of PU vascular grafts as human peripheral bypasses remains in scarcity because of

lacking investigations .

3. Key Challenges Limiting the Translation of Polymer-Based TEVGs

Ideally, bioartificial blood vessels should possess the structural and functional capacities of native structures .

Therefore, identifying the conditions that may lead to deviation from these ideal characteristics is vital for reducing the

potential of device failure. It is also essential that these structures be rendered with bio-inertness for supporting somatic

growth post-transplantation . To this end, pinpointing the key challenges the current polymeric TEVGs face in clinical

translation is extremely necessary.

As we all know, the endothelium is essential in restricting the movement of water, cells, and protein between intravascular

and interstitial compartments . Based on the characterization demonstrated in below table, TEVGs solely composed

of natural polymers have better performance regarding biological aspects . These microscale vascular conduits are free

of considerations regarding biocompatibility, degradability, and cytotoxicity. They are highly supportive of cell repopulation

and nutrition exchange. Besides, different natural polymers will create vascular substitutes with specific physical

performance. For instance, collagen type I exhibited a vital barrier function after cell seeding.

Moreover, the endothelium has to align on the basement membrane, where collagen type I is the essential component

and regulator . This characteristic explains why vascular replacements consisting of collagen type I have a vital

barrier function and indicates the potential for endothelium regeneration . However, the mechanical properties of these

natural polymer scaffolds require significant improvement. Going back to collagen type I, the stiffness of collagen type I is

0.1–18 kPa when the concentration is 3–20 mg/mL . Based on the fact that compliance is the inverse of stiffness ,

the compliance of collagen type I is around 10  cm/s. The compliance of vascular conduits made by collagen type I

conducted with microfluid/hydrogelation is close to 10  cm/s. The compliance of native micro-vessels with the same

dimension is unknown, but the compliance of this polymer has been highly reduced when formed into microvascular

constructs.

However, the mechanical properties of polymers are flexible and changeable by distinct ways of fabrication,

physical/chemical reactions, and incorporation with other materials . The HA vascular micro-tubes in Table have a

stiffness from 19 to 32 kPa, while, when it combines with PVA as a composite hydrogel, the stiffness can be extended to

200 kPa . Other similar examples provide future research directions on amplifying the mechanical properties of natural
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polymer-based vascular homologs but also bring new challenges of choosing to fabricate techniques, a combination of

polymers, and methods of modifications . These problems and confusion can only be solved with arduous academic

work. Besides that, the mechanical properties of these natural polymeric vascular substitutes still need to be discovered,

which implies a shortage of small- and macro-scale vessel analogs generated by natural polymers.

For vascular scaffolds created by synthetic polymers, their dimensions become multiple at the micro-scale level, and the

small ID vascular structures have been formed through the braiding of PET/PLGA and the casting/electrospinning of

PLGA/ P(CL/LA). Except for this, the morphology of blood vessel conduits is not limited only by straight but also by

branched tubes . Most scaffolds’ mechanical features are available and are highly hopeful of reaching that of native

blood vessels, as listed in Table 2. For example, in Table 2, the saphenous vein’s longitudinal elastic modulus (stiffness)

can be 130 or 23.7 MPa. The mean diameter of the usual great saphenous vein (GSV) is 5.0 ± 2.4 mm. The mean

diameter of a typical small saphenous vein (SSV) is 3.1 ± 1.3 mm .

Regarding the dimensions, various polymers and corresponding fabrication skills presented in Table 1 can meet the

requirement, such as silicone, PU, heparin-releasing PLLA/PCL, and PEG/collagen/PU. For the stiffness, 10% (w/v)

P(CL/LA)/PGLA (sealed) and 15% (w/v) P(CL/LA)/PGLA (sealed) are capable of matching the stiffness of native small

saphenous with 23.7 MPa . However, most synthetic polymers’ stiffness lies in the range of kPa. Apart from that,

polymers’ suture retention strength and burst pressure are still predominantly lower than native vessels. Compared to

single synthetic-polymer-made scaffolds, a mixture of polymers with or without biological molecules/natural polymers

demonstrated potential neovascularization ability . Therefore, new challenges arise in this field, and these issues are

becoming more specific and detailed. How do we control the components’ percentage of composite polymers to optimize

biomechanical properties? How can we choose suitable polymer partners among hundreds of polymer families? The

methods and choices are increasing, but at the same time, the complexity of studies and characterization of those

synthetic polymer-based scaffolds are also being augmented. Similar to vascular replacements created by natural

polymers, more exploration and studies should be conducted and established to develop acellular vessel prostheses with

small- and macro-dimensions.

Table 1. Polymer-Based TEVGs and Characterizations.

Polymers Applied Technology Characterization References

Natural
Polymers

Collagen type I
Hydrogelation/microfluid;

Strong barrier function after
being seeded with human
vascular cells; compliance

coefficient of BSA: 5.5 × 10
± 3.5 × 10  cm/s (n = 3) at

days 3–4 and 7.9 × 10  ± 3.5
× 10  cm/s at days 6–7;

ID = 116 μm

Hydrogelation/laser degradation D = 50 μm

Gelatin Hydrolyzation/microfluid

Good fluidic access and
cytocompatibility to murine
mammary epithelial cells;

microscale

Silk Braiding

Implanted as a rodent
abdominal aorta with

ECs/SMCs migration and
alignment observed;

ID = 1.5 mm

Polysaccharides: HA Molding/microfluid/hydrogelation
Efficient delivery of nutrients

Stiffness: 19–32 kPa;
microscale

Polysaccharides:
alginate/Cacl2 (addition) Extrusion/injection 3D printing

Stiffness < 500 kPa; short
maturation of SMCs;

D = 1–3 mm BT; D = 2 μm ST
L = 2 μm
T = 2 μm

Fibrin 3D-quasi microfluid
Strong ADSCs attachment,

regrowth, and differentiation;
microscale
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Polymers Applied Technology Characterization References

Synthetic
Polymers PCL/PVA Extrusion3D printing

Porosity: 61% with strand
space 0.7 mm; 74% with

strand space 1 mm;
D = 2–4 mm BT

PCL/chitosan Electrospinning/extrusion 3D
printing ST

PCL/GelMA-gellan/alginate

Extrusion 3D printing

D = 4 mm ST

PDMS/fibrin
A tissue ring of SMCs after

being seeded with HASMCs;
D = 5 mm ST

Silicone

Stiffness: 20–244.78 kPa;
Support culturing of HUVECs,

HA-VSMCs, HDF-n;
D = 0.5–2 mm ST

PU

DLP 3D printing

EM = 1.1 MPa No cytotoxicity
at highest concentration 26

mgL ;
ID = 1.5 mm OD = 4 mm ST

PPF

P = 0.35 nm for ID = 2.5 mm
support cell culturing of

HUVECs, hMSCs, HUSMCs;
ID = 2.5 or 1 mm t = 0.25 or

0.15 mm ST

 

PTHD-DA
SLA 3D printing ID = 18 μm T = 3 μm L = 160

μm BT
ID = 2 μm T = 2 mm L = 2 mm

ST2PP 3D printing

Heparin-releasing PLLA/PCL Electrospinning/extrusion 3D
printing D = 5 mm L = 6 cm ST

PGS/PCL/salt Casting/molding

SRS = 0.45 ± 0.031 N, EM =
536 ± 119 kPa UTS = 3790 ±
1450 kPa BP = 2360 ± 673

mmHg C = 11% ± 2.2%,
transplanted as rat abdominal

aorta with progressive
vascular remolding in 3

months;
ID = 720 μm T = 290 μm

10% (w/v) P(CL/LA)/PGLA
(sealed)

Casting/electrospinning

SRS = 2.16 ± 0.037 N EM =
17.73 ± 3.09 MPa UTS = 2.93 ±

0.26 MPa BP = 1002.17 ±
181.98 mmHg, support

HUVECs’ attachment and
proliferation;

ID = 1.02 ± 0.5 cm
T = 0.21 ± 0.02 cm

15% (w/v) P(CL/LA)/PGLA
(sealed)

SRS = 3.20 ± 0.577 N EM =
26.90 ± 6.66 MPa UTS = 4.75 ±

0.97 MPa BP = 1321.66 ±
214.67 mmHg support

HUVECs’ attachment and
proliferation;

ID = 1.01 ± 0.08 cm
T = 0.19 ± 0.09 cm

PLCL (inner layer)/PGA/PLA
(outer layer) Casting/electrospinning

Cell infiltration in scaffold
observed, transplanted as

infrarenal aortic graft in mice,
maintaining 8-month survival;
Outer layer ID = 600 μm, inner

layer ID = 200 μm
T = 3 mm
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Polymers Applied Technology Characterization References

PEGDA LD

Elongated microchannels and
molecule transportation
between unconnected

microchannels observed;
support HUVECs’ seeding;

Microcapillary

PU/gelatin PI

P = 2 μm PE = 1.2 ± 0.4
mLmin  UTS = 2700 ± 400

kPa
Support hMSCs’ adhesion

and growth

PLLA/inner MSCs

Sheet-based fabrication

Patency of 100% in 8.6 weeks;
vascular remolding observed,
SMCs alignment in 60 days;

ID = 0.7 mm

PLCL/FB/collagen
4-week transplantation,

patency unknown;
ID = 4.1 mm

PET/PLGA Braiding Small ID

Polyester/PTT weaving EM = 1056 MPa under
pressure 200 mmHg

Spandex (over 80%
PU)/polyester knitting

Transplanted as dog
abdominal aorta;

D = 8–10 mm

PLA/PCL CO  gas foaming

Recellularized with HUVECs
exhibiting high viability and

migration;
Small ID

PEG/collagen/PU

Electrospinning/hydrogelation

Mean pressure = 50 mmHg,
peak to through pressure = 20

mmHg, circumferential
modulus = 190 kPa, SRS =

406 ± 124 gf, BP = 1440 ± 40
mmHg, C = 5.9 ± 1.4%,

support rapid
endothelialization;

ID = 3.7–4.7 mm

PLGA/collagen/elastin

Stiffness: 2–137 kPa, 2–901
kPa, support ECs, SMCs

growth, dry pore area = 1.92 ±
0.23 μm  wet pore area = 4.74

± 0.43 μm ;
dry D = 384 ± 22 nm–1196 ± 79
nm, wet D = 446 ± 69 nm–1735

± 103

PA/PEG Hydrogelation/molding
P = 35 nm, stiffness:0.1–0.3
kPa, 1–4 kPa, 6–8 kPa, cell

adhesion observed

PGS molding Supported the seeding of
hSkMDCs and HUVECs

PDMS/peptides microfluid
Enhanced blood

biocompatibility and cell
adhesion
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Polymers Applied Technology Characterization References

PLLA/gelatin

Electrospinning

Supported SMCs and
HUVECs alignment and

proliferation and improved
cell proliferation;

ID = 2–6 mm

PCL/collagen UTS = 4.0 MPa, EM = 2.5 MPa

PCL/PEO/GCC hydrogel
sleeve

C = 4.5%, water permeability =
528 mL/cm /min, BP = 695

mmHg, SRS = 2.38 N,
supported the seeding and

culturing of vascular ECs and
SMCs in vitro, quick cell
growth, and stable flow

perfusion;
Small ID

Elastin/PDO SRS = 375 gf, C = 3.8%, EM =
9.64 MPa

collagen/elastin/PLGA/PLCL
Substantial interactions

between SMCs;
D = 200–800 nm T = 0.5 mm

collagen/elastin/PLLA UTS = 0.83 MPa, EM = 2.08
MPa

T = thickness; D = diameter; L = length; ID = inner diameter; P = porosity; BT = branched tubes; ST = straight tubes; BP =

burst pressure; UTS = ultimate tensile stress; EM = elastic modulus; PE = permeability; SRS = suture retention strength;

C = compliance; hSkMDCs = human skeletal muscle cells; hMSCs = human mesenchymal cells; LD = laser degradation;

PI = phase inversion; HUVECs = human umbilical vein endothelial cells; HA-VSMCs = human aortic vascular smooth

muscle cells, HDF-n = human dermal fibroblasts-neonatal; FB = fibroblast; HUSMCs = human uterine smooth muscle

cells.

Table 2. Mechanical Properties of Native Blood Vessels.

Vessel Types and Axial
Directions

Elastic
Modulus 

Ultimate Tensile
Strength 

Strain at
Failure (%)

Burst Pressure
(mmHg) References

Saphenous vein
circumferential 43/4.2/2.25 3/1.8/4 11/243/180 NA/1680–

3900/1250

Saphenous vein longitudinal 130/23.7 13/6.3 17/83 NA/NA

Left internal mammary artery
circumferential 8 4.1 134 2000

Left internal mammary artery
longitudinal 16.8 4.3 59 NA

Femoral artery circumferential 9–12 1–2 63–76 NA

NA = not available.

More importantly, the future perspective for developing synthetic-polymer scaffolds should focus on enhancing biophysical

performance, such as neovascularization. Some vascular scaffolds proved insufficient for cell regrowth due to the porosity

and fabrication techniques used . As an example, vascular scaffolds developed from electrospinning have been shown

to possess low capacities for cell migration, adhesion, viability, and proliferation . The relatively small pore sizes

support these facts within electrospun scaffolds. Small pore sizes prevent cell infiltration and metabolite, nutrients, and

waste diffusion. Synthetic (polyurethane and PLGA) and natural (derived from gelatin) polymers used to create

electrospun scaffolds adversely influenced cell bioactivities due to their pore size and porosity . Besides, cytotoxic

solvents used in forming scaffolds’ surfaces, inferior structural integrities, and limited degradation rates have been shown

to inhibit vascular remodeling and recellularization . As a result, the successful creation of synthetic polymeric vascular

tubes demands paying attention to the properties of polymers and other easily ignorable influencers, such as the cytotoxic

solvents and agents residual in tissue-engineering technologies.
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