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One of the most significant processes in the autonomous navigation is path planning. Path planning involves the

determination of a possible path for a mobile robot to move from a start to a target location in a particular

environment while considering optimization parameters like path distance, time and path smoothness. Mobile robot

path planning is a subcategory of trajectory planning.
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1. Introduction

One of the most significant processes in the autonomous navigation is path planning . Path planning involves the

determination of a possible path for a mobile robot to move from a start to a target location in a particular

environment while considering optimization parameters like path distance, time and path smoothness . As a

result, the mobile Robot is expected to reach its destination within the shortest time.

Robots have been proven to be useful in various industries, including in areas which are inaccessible to humans.

In recent years, autonomous navigation and path planning have attracted attention for a wide range of applications

in which robots must operate in complex and hazardous environments . A large amount of work is being

performed to develop an intelligent algorithm that can be applied to navigating a mobile robot without a need for

manual assistance.

Path planning is divided into two types, namely global and local path planning. In global planning, the autonomous

robot requires information about the environment, the starting and end locations, and the positions of obstacles (all

of which deal with an entirely known environment). In contrast, such information is not known (somewhat known

and unknown environment) in local path planning .

There are two categories of obstacle settings, namely static and dynamic obstacles. In the former, the complete

path must be determined prior of the start of robot movement; however, in the latter, replanning in real time is often

required in dynamic or partially unknown environments, which takes a long time for path determination. The path-

planning problem can be described briefly in the following steps: firstly, a feasible path for the robot must be

determined based on defined start and goal positions in both known and unknown environmental settings.

Secondly, the mobile robot should be able to avoid collisions with dynamic and static obstacles. Additionally, the
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mobile robot should complete the obstacle avoidance and pathfinding tasks using the shortest path and the least

amount of time.

The advancement of automation and in-depth research in autonomous navigation technology has facilitated an

increase in the use of autonomous robots in a wide range of industrial applications, including nuclear power plants

using Grid-based rapidly random exploring trees GB-RRT* , space exploration using Ordered Upwind Method

based Direction-dependent optimal path planning (OUM-BD) , rescue missions, mines, and war zones .

Planning algorithms are also helpful for frequent operations in static environments wherein optimality is needed (for

example, industrial applications) .

To achieve the path-planning goal, many factors should be taken into consideration, such as the obstacle and map

borders. Furthermore, factors such as static/dynamic obstacles and complete/partial unknown environments

increase the difficulty of handling the path-planning problem. In an unknown setting, the mobile robot must execute

simultaneous localization and mapping while exploring the environment, known as the simultaneous localization

and mapping (SLAM) problem . Although robot path planning in a known environment with static obstacles is

considered an easy task, path planning in a dynamic environment is a challenging and fascinating area of robotics

research.

2. Background and Related Works of Mobile Robot Path
Planning

Mobile robot path planning is a subcategory of trajectory planning. The aim is to determine an optimal path from a

defined start to a goal point without considering kinematics and control inputs .

A feasible path for the robot in a predictable environment can be generated using global path planning approaches.

Global planning methods are searching for an optimal path in known environments which is particularly successful

static environments. Some of the most popular methods include Voronoi diagrams , visibility graphs and

adaptive roadmaps , and virtual force fields (VFF) .

In contrast, local planning is built based on a dynamic approach that relies entirely on local perception instead of

knowing the entire environment. Since the workspace is uncertain, local planning guides the mobile robots to

detect nearby obstacles and take appropriate action. To avoid unexpected problems that may occur with dynamic

obstacles, reactive planning must be precise and work in real time. Such situations often lead to failures in global

path planning. When an unexpected obstacle appears in the robot’s path, it is necessary to re-plan to avoid

colliding with the obstacle . Planning in an unpredictable setting is a complicated issue due to the generated

map must always be adjusted at every iteration of the path planning algorithm. To offer a complete solution to such

a problem, many autonomous systems combine the features of global and local navigation systems .

The uncertainty and complications of the path-planning problem in a local environment with obstacles have drawn

the interest of many researchers  and have been a subject of great interest in recent years. As a result, such
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path planning algorithms have been thoroughly explored, with several approaches and the solutions presented to

solve this problem being as follows:

The artificial potential field (APF) method, invented by Khatib , is a traditional path-planning method based on

potential energy (gravity, magnetic field, or gravitational). A robot in the coordinate space could travel using this

method while being driven by attractive and repulsive fields produced by obstacles and targets. This method is

used in the robotics field due to its analytical clarity, real-time performance, and ease of use in determining the

shortest path from start to goal positions.

Barraquand et al. have introduced a search-based path-planning method based on the potential field with a direct

path search . Despite the many benefits that APF provides due to its simple structure, it has certain drawbacks,

such as that the robot can become trapped in local minima based on the obstacle location and the potential field

they produce. To address this issue, several studies have proposed various ways to avoid local minima in APF .

Virtual field histogram (VFH)  and enhanced VFH+  are prominent approaches that describe the sensor

uncertainty due to spatial data from sensors, similar to APF. VFH and APF will perform efficiently with dynamic and

static obstacles in constrained settings. Numerous path planning methods that consider obstacles in unpredictable

settings have been discussed in . Ayawli et al.  provided a path-planning method in an uncertain

environment based on the Voronoi diagram and computation geometry technique (VD-CGT), employing VD and

mathematical modeling, with a narrow rectangular area around the robot used to assess collisions. Ravankar et al.

have described collision detection based on virtual obstacles using VD-CGT ; however, in , they show how

to use dispersed obstacle knowledge transfer for collision avoidance and path planning in complex environments

with multiple robots.

Sampling techniques are remarkable because they use deterministic function sampling to plan using the C-

connection space. These functions create a map of the robot’s possible C-space movements . Due to its

effectiveness, the sampling-based planning (SBP) methods have received close attention in recent years. The

common sampling-based planners are probabilistic road maps (PRM)  and rapidly random exploring trees (RRT)

. The PRM’s fundamental idea revolves around the distribution of nodes over C-space before connecting them

with horizontal lines that form a roadmap graph. By confining the search to a network and interconnecting the free

working space, the PRM can effectively determine the shortest paths.

The RRT and PRM algorithms address local minima and high computation periods for pathfinding due to their

outstanding practical performance and solid theoretical characteristics . A potential function based-RRT* (P-

RRT*) integrates APF in RRT* to enhance the convergence of the path into optimal solution . Such algorithms

compute many dispersed sample points throughout the free space and link them to establish a tree from which a

path is found using a search method using Improved A* . The rapidly exploring random trees (RRT) technique

has been frequently used in the literature, but the selection of a specific tree to be expanded is the most critical

issue that impacts the overall efficiency of path planning in RRT. Wang et al.  have presented revolutionary

multi-RRTs based on learning for mobile robot path planning (LM-RRT) in narrow passages.
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Bidirectional-RRT  uses a bidirectional tree search for faster path planning. Similarly, work in  proposed a lazy

PRM method, an enhanced PRM that minimizes the frequency of collision tests that occur during pathfinding and,

therefore, minimizes the planner’s run time. On the other hand, the work presented in  demonstrated how to

improve the roadmap’s connectivity by linking previously developed connected components. Probabilistic road

maps-star (PRM*) is an improved variant of the initial PRM method, which was proposed by . With such a

method, the number of sample nodes determines the connection distance. As the number of samples grows, the

connection radius gets smaller, making it easier to move from one place to another. For moving from one node on

the generated roadmap to the next, SBP approaches employ a local planner. The planning issue is resolved by

finding the shortest route between the start of the roadmap on one side and the roadmap to the goal on the other

side. Search-based techniques, such as the Dijkstra and A* algorithms, have been used to discover the shortest

paths on a built network. The A* method starts by examining the undiscovered node and has the lowest projected

cost . These search plans are fast and can work with maps of various sizes. By analyzing the mechanics of the

robotic system, when the design has been generated on the graph, the path smoothing methods can generate a

smoother path from start to goal positions  such as Infused Tangential Curves (ICT) method .

Several authors have studied the advantages of the genetic algorithm (GA) for addressing the planning problems

for autonomous robots in complex environments. Some of these algorithms depend on a novel fitness function for

controlling the distance, safety, and energy of the robot , a knowledge-based GA , and adaptive GA .

Another way to find a collision-free path is to calculate artificial potential values using GA. This method was initially

used in  for solving the obstacle-free mobile robot path-planning problem. The robot is considered as an object

that is navigating in various surroundings, and the technique is cantered upon the attraction and repulsion forces

produced by the goal and obstacles .

The authors in work  presented a hybrid metaheuristic based on the genetic algorithm–particle swarm

optimization (GA–PSO) method for mobile robot path planning in grid maps to determine a feasible path from

predefined starting and ending points. In contrast to traditional GA and PSO algorithms, the suggested technique

avoids computational complexity and premature convergence. First, the integer factorization problem (IFP) is

generated using a hybrid GA–PSO, and then a cubic B-spline method is adopted to provide a near-optimal

obstacle-free path. Bi et al. have presented a robot-path-planning approach using fuzzy logic and evolutionary

algorithms to lower the complexity of robot path planning during obstacle avoidance in a dynamic environment .

The use of deep reinforcement learning (DRL) for robot navigation in environments with unknown rough

topography, such as in urban search and rescue (USAR), is investigated by Zhang et al. . In this work, they

created an Actor-critic-model-3 (A3C)-based network that employs depth images, elevation maps, and 3D

orientation as inputs to identify the best robot navigation movements. The network was trained in a series of

simulated 3D environments that have been varied in traversal motion. The experiment’s results reveal that when

the rough terrain is unknown, the DRL approach may successfully navigate a robot in an environment to a

specified target location.
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A detailed study on the computational intelligence (CI) algorithms with the time domains and the environment

models that are used for 2D/3D-unmanned aerial vehicle (UAV) path planning was presented by Zhang et al. .

The authors analyzed the modeling, optimization criteria, and path planning algorithms for UAV robots and

concluded that the common methods to address the path planning of mobile robots are genetic algorithm (GA),

particle swarm optimization algorithm (PSO), artificial potential field (APF), and ant colony optimization algorithm

(ACO).

Patle et al.  have thoroughly examined several mobile robot navigation techniques that are now commonly used

in robotics applications. The investigations of classical and reactive approaches were presented in detail. The

review compares tabular data and charts for the individual navigational strategies that can be used with specific

robotics applications. Seckin  has presented a method for robot navigation using the real-life bookmarks

arranged in its memory. With this method, the robot utilizes the memorized traveled path with several key points to

plan its path from starting to target positions. It uses the laser detection and ranging sensor (LIDAR) for mapping

the environment into 2D maps. The robot is then driven on its path using the previously prepared map in its

memory. Another method for memorizing the robot’s path through generating a network of reuse paths in planetary

exploration has been proposed by Stenning et al. . It expands the visual teach and repeat method that allows

the robot to visit and revisit any network nodes. To select the right path, the rapidly exploring random tree (RRT)

method is used to effectively plan the robot’s path in such networks. Khan et al. have proposed RNN-based

metaheuristic algorithms for obstacle avoidance, robot path planning, and control . Table 1 shows a

comparison between reviewed methods in mobile robot path planning in terms of algorithms, testing types

(simulation or physical), sensors used, obstacle avoidance, and indoor/outdoor applications, as follows:

Table 1. Illustrates a comparison between reviewed works.
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Author Year Algorithm Static
Obstacle

Dynamic
ObstacleMapping

Online
Path

Planning
Indoor/Outdoor Type of Test

Zhang
2018

DRL Yes Yes 3D No - Simulation

Chao 2018 GB-RRT Yes No 2D No - Simulation

Shum 2015 OUM-BD Yes No 2D No - Simulation

Zhang
2012

Multi-
objective

PSO
Yes No 2D No - Simulation

Bakdi2017 GA/AFL Yes No 2D Yes Indoor Simulation/Experiment

Han 2017 SPS/PI FLP Yes No 2D No - Simulation

Muhammad
2021

GLS Yes Yes 2D Yes Indoor/Outdoor Simulation/Experiment
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Author Year Algorithm Static
Obstacle

Dynamic
ObstacleMapping

Online
Path

Planning
Indoor/Outdoor Type of Test

Khatib
1985

APF No Yes 2D Yes Indoor Simulation/Experiment

Barraquand
1992

PF Yes Yes 2D No - Simulation

Cetin 2012 APF Yes No 2D No - Simulations

Borenstein
1991

VFHV Yes No 2D No Indoor Simulation/Experiment

Ulrich 2000 VFH* Yes No 2D Yes Indoor Simulation/Experiment

Ulrich 1998 VFH+ Yes No 2D Yes Indoor Simulation/Experiment

Ravankar
2020

VFH+ Yes Yes 2D Yes - Simulation

Tuncer
2012

GA Yes Yes 2D No - Simulation

Ayawli
2019

VD/CGT Yes Yes 2D No - Simulation

Ravankar
2019

VD/CGT Yes Yes 2D Yes Indoor/Outdoor Simulation/Experiment

Ravankar
2017

VD/CGT Yes Yes 2D Yes Indoor/Outdoor
Simulation/
Experiment

Ravankar
2017

VD/CGT Yes Yes 2D Yes Indoor/Outdoor Simulation/Experiment

Qureshi
2016

P-RRT* Yes No 2D No - Simulation

Fu 2018 Improved A* Yes No 2D Yes Indoor Simulation/Experiment

Wang 2018 LM-RRT Yes No 2D Yes Indoor Simulation/Experiment

Xinyu
2019

Bidirectional-
RRT

Yes No 2D Yes Indoor Simulation/Experiments

Bohlin
2000

Lazy PRM Yes No 2D Yes Indoor Simulation/Experiment

Karaman
2011

PRM* &
RRT*

Yes No 2D Yes - Simulation
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The contribution of this research is to present an approach for mobile robot path planning in complicated

environments with the presence of obstacles. In circumstances where standard methods fail to offer a solution,

such as for small passages, obstacle avoidance, and local minima problems, the generalized laser simulator (GLS)

can overcome such associated path-planning problems. Furthermore, the algorithm presented an optimized

version that will generate pathways with lesser nodes and a greater success rate while being computationally

efficient. It is an enhancement of the laser simulator method, which has been successfully adopted in many works

 and an extension of  for avoiding obstacles during path planning.
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