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As rainfall exhibits high spatiotemporal variability, accurate and real-time rainfall monitoring is vitally important in fields

such as hydrometeorological research, agriculture and disaster prevention and control. The utilization of commercial

microwave links (CMLs) for rainfall estimation, as an opportunistic sensing method, has generated considerable attention.

Relying on CML networks deployed and maintained by mobile network operators can provide near-surface precipitation

information over large areas at a low cost. 
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1. Background

Precipitation, as one of the most significant links in the Earth’s water cycle, is intimately associated with people’s lives.

The spatial and temporal heterogeneity of precipitation development is the main cause of natural disasters such as

droughts, floods and mudslides . Accurate monitoring of precipitation has significant implications in fields such as

agriculture, hydrometeorological research and water resource management.

Currently, meteorological operations mainly rely on rain gauges, weather radar and meteorological satellites to measure

precipitation. However, due to the inherent limitations of these dedicated rain sensors, quantitative precipitation products

still cannot satisfy the requirements of comprehensive meteorological observations, especially as global warming may

lead to more extreme precipitation events . Rain gauges, which are believed to provide point measurements of surface

rainfall, are unsuitable for constructing a monitoring network due to their low spatial representativeness. In addition, wind

and splash effects introduce uncertainties in its measurement . Contrary to rain gauges, based on the statistical power–

law relationship between the radar reflectivity Z and the rain rate R, weather radar allows for quantitative precipitation

estimation (QPE) over large areas. However, the parameters of the Z–R relationship are highly sensitive to the raindrop

size distribution (DSD) associated with precipitation types, geographical locations and climatic characteristics, which may

cause large systematic biases . Other uncertainty sources include ground clutter, beam blockage, bright bands and the

vertical variability of the precipitation system . As meteorological satellite technology matures, satellites can measure

precipitation almost globally, which is especially important in areas where radar and rain gauges are not available .

However, subject to low spatial and temporal resolution, satellite products are not available for small-scale hydrological

applications, such as catchment modeling in urban and mountainous areas. Moreover, although several satellite-based

rainfall inversion algorithms have been developed , the accuracy of their estimates still needs to be improved .

Consequently, the concept of opportunistic rainfall measurement methods emerged, and the potential of devices such as

commercial microwave links (CMLs) , personal weather stations , vehicle windscreen wipers  and street cameras

 has been successively explored. These methods can provide additional precipitation information and promise to

improve dedicated precipitation products, with CMLs being one that has the most prospective application. Based on

existing CML networks built and maintained by mobile network operators, it can provide alternative precipitation

observations in a cost-effective manner in areas lacking rain sensors  or additional precipitation information in areas

with existing rainfall observations to enhance the spatial and temporal resolution as well as the accuracy of precipitation

products .

2. Procedures in Deriving Rainfall Maps from Attenuation

When the path of CMLs is exposed to rainfall, additional attenuation of the microwave signal occurs accordingly. However,

these attenuation increments are not entirely due to scattering and absorption by raindrop particles. Phenomena such as

electronic component drift, changes in water vapor, multipath effects, and wet antenna effects can also lead to changes in
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signal quality. Deriving rainfall estimates from CML attenuation is, therefore, a sophisticated process, which is described in

detail in this section.

2.1. Classification of Dry and Wet Periods

As mentioned above, phenomena other than or triggered by rainfall may also cause signal impairment. Therefore, when

we obtain attenuation data for CMLs, typically the transmitted signal level (TSL) minus the received signal level (RSL), the

first critical issue is to determine at each timestamp whether the CMLs are affected by rainfall. More simply, the CML data

need to be classified into dry (rain free) and wet (rainy) periods. In order to accomplish the classification of dry and wet

periods, scholars have developed a variety of methods, which can be broadly divided into three categories.

The first category is based on the analysis of attenuation sequences to determine whether rainfall exists on the path of

CMLs. The simplest way to distinguish between dry and wet periods is based on a global threshold for attenuation, with

periods above the threshold being treated as wet . Rahimi et al.  found that RSL sequences of dual-frequency

microwave links are highly correlated during wet periods and suggested setting correlation thresholds to distinguish

between dry and wet periods. Further, Overeem et al.  extended the spatial correlation of rainfall from individual CMLs

to all CMLs within a certain range and proposed the so-called nearby link approach (NLA). They considered a time period

as wet if the RSLs of at least half of the CMLs in the range decreased simultaneously during that time period. In addition,

Schleiss et al.  found significant differences in the local variability of signal attenuation between dry and wet periods

and proposed the use of a rolling window to calculate the standard deviation of the attenuation sequence to identify dry

and wet periods based on a predetermined threshold. Recently, Graf et al.  proposed an improved version of this

algorithm, arguing that the threshold can depend on the fluctuating trend of individual CMLs rather than only on

climatology. Based on the short-time Fourier transform of the RSL sequence, Chwala et al.  found that the normalized

amplitude difference between low and high frequencies of the power spectrum can be used to determine the dry and wet

periods.

The second category of classification methods relies on dedicated rainfall observations in the vicinity of CMLs. As near-

surface rainfall measurement instruments, rain gauges are widely used to achieve dry/wet period classification for CMLs

. In the literature , considering the elevation angle of the radar, if the path-averaged rain rate of the radar QPE is

greater than 0.1 mm/h, the current and subsequent time steps are regarded as wet periods. Kumah et al.  utilized

Meteosat Second Generation satellites to check for the presence of rain areas in the path of CMLs.

The last category is data-driven approaches based on machine learning. Thanks to the massive data, they can derive

hidden feature information to explore patterns of signal fluctuations and apply them to dry and wet period classification.

Reller et al.  demonstrated the applicability of a factor graph-based quasi-periodic signal model for dry and wet period

classification. The literature  reported cases where Markov models were employed to determine dry and wet

periods. In addition, dry/wet classification based on the multifamily likelihood ratio test  and the kernel Fisher

discriminant analysis  have been attempted. Subsequently, time-delay neural networks , long short-term memory

neural networks (LSTM) , support vector machines (SVM)  and convolutional neural networks (CNN)  are also

used for dry and wet period identification for CMLs. In , the dry and wet period classification performance of several

machine learning models was compared and the ensemble machine learning classifier was recommended as the

preferred one. Additional information on existing dry and wet period classification algorithms can be found in Table 1.

Table 1. Existing techniques for dry and wet period classification.

Authors and
Year Country Highlights

Rahimi et al.
(2003) England

The RSL sequences of dual-frequency CMLs were found to increase in correlation during
the wet period, and a correlation threshold was used to distinguish between dry and wet
periods. The classification method detected approximately 80% of dry periods and 92.5% of
wet periods.

Upton et al.
(2005) England

Rain gauge data in the vicinity of CMLs were used to differentiate between dry and wet
periods and compared with the classification method of dual-frequency CMLs. The use of
nearby rain gauge data could well improve the dry and wet period classification of dual-
frequency CMLs.

Leijnse et al.
(2007) 

The
Netherlands

Based on the historical data, a simple global threshold was constructed and the portion
above the threshold was treated as wet periods.
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Authors and
Year Country Highlights

Schleiss et al.
(2010) France

Based on the different local variability of dry/wet period attenuation, the standard deviation
of attenuation was calculated using a rolling window to differentiate between dry and wet
periods according to a preset threshold. On average, 92% of wet periods, 86% of dry periods
and 93% of total rainfall were identified.

Overeem et al.
(2011) 

The
Netherlands

Radar data were used to distinguish between dry and wet periods; considering that the
correlation of RSL sequences of nearby CMLs in wet periods rises, the nearby link approach
(NLA) was proposed to distinguish between dry and wet periods. Both radar and NLA were
able to invert rainfall accurately with similar results.

Reller et al.
(2011) Switzerland The Gaussian factor graph was used to distinguish between the dry and wet periods. Case

studies showed that the proposed method has a high classification performance.

Chwala et al.
(2012) Germany

Due to the significant increase in the high-frequency components of the signal during the
wet period, a spectral analysis method based on the short-time Fourier transform was
proposed to classify dry and wet periods. The weighted mean error rate of the classification
results was as low as 0.098.

Wang et al.
(2012) Switzerland

A Markov switching model was used to differentiate between dry and wet periods, which
was compared with rolling standard deviation, factor graphs and the global threshold
method. The false-positive and false-negative rates were about 8% and 15%, respectively, in
the case of a stationary baseline. In the case of an unstable baseline, the false-positive and
false-negative rates were about 5% and 23%, respectively.

Rayitsfeld et
al. (2012) Israel A Hidden Markov Model was used to determine the dry and wet periods. Rainfall inversions

using this method showed good correlation and low bias compared with rain gauge results.

Cherkassky et
al. (2012) Israel

Based on the statistical characteristics of attenuation, a linear Fisher’s discriminant was
used to distinguish between dry and wet periods and was able to identify 83% of wet
periods, with a false-positive rate of 12%.

Harel et al.
(2013) Israel An algorithm based on a multifamily likelihood ratio test was used to separate dry and wet

periods, and the true-positive rate could reach about 90%.

Dordević et al.
(2013) Germany

Focused time-delay neural networks were used to distinguish between dry and wet periods.
The average test error of the classification results was only 1.1095%, with a correlation
coefficient of 0.9647.

Cherkassky et
al. (2014) Israel

Based on the statistical characteristics of attenuation, the kernel Fisher’s discrimination was
used to distinguish dry and wet periods. The results showed that the classification accuracy
could reach 85.35%.

He et al. (2019) China A dry and wet period classification algorithm based on LSTM was proposed. The daily
classification accuracy exceeded 60%, with some results achieving up to 98%.

Polz et al.
(2020) Germany A dry and wet period classification algorithm based on CNN was proposed. An average of

76% wet periods and 97% dry periods were detected in the validation results.

Song et al.
(2020) China

SVM was used to distinguish between dry and wet periods based on statistical features of
attenuation. The classification accuracy exceeded 0.8 and the majority of the outcomes
displayed true-positive and false-positive rates that exceeded 0.9 and were less than 0.2,
respectively.

Kumah et al.
(2020) Kenya Satellite data were used to identify rain areas along the CML path. The accuracy of rainfall

inversion for CMLs supported by satellite data was high.

2.2. Determination of Baseline

After the classification of dry and wet periods, the wet period attenuation cannot be used directly for rainfall inversion;

instead, the baseline attenuation (also known as the zero-level attenuation), which consists mainly of free-space losses

and gas attenuation, needs to be removed from the wet period attenuation. Considering the generally short duration of

rainfall, a common assumption is that factors affecting baseline attenuation may differ little between the wet period and the

preceding dry period. Thus, the baseline can be set as the most recent dry period attenuation prior to rainfall  or the

average dry period attenuation over a period of time before and after the rainfall event  and kept constant during the

wet period. However, a constant baseline during the wet period may be impractical. To reflect the variability of the baseline

during the wet period, Upton et al.  linearly interpolated the dry period attenuation at both ends of the rainfall event to

determine the baseline. Fenicia et al.  compared a single-parameter baseline model based on a low-pass linear filter

with a constant baseline model and found the former to have superior performance. Based on the temporal distribution of

rainfall, the baseline can also be estimated as the median of all dry period attenuation over a long period prior to the wet

period .
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Furthermore, some baseline estimation algorithms have been developed that do not require dry and wet period

classification. Assuming that the rain rate is a random process, Ostrometzky et al.  demonstrated that information about

the baseline is hidden in the minimum attenuation and suggested using a sliding window to estimate the baseline. For the

median attenuation method described above, the baseline can be estimated as the median of all attenuations by utilizing

a sufficiently large window without the need for dry/wet classification because the window can contain more dry-period

samples .

2.3. Wet Antenna Attenuation (WAA) Correction

Rainfall not only scatters and absorbs microwaves, but other phenomena associated with it, such as increased water

vapor, decreased temperature and antenna wetting, can lead to additional attenuation that cannot be eliminated by the

baseline. Considering that attenuation due to temperature and water vapor variations is typically one to two orders of

magnitude smaller than rain-induced attenuation (with the possible exception of the water vapor absorption band around

22 GHz), these can generally be ignored. However, the water film covering antennas can change the antenna’s directivity,

efficiency and reflectivity , introducing additional attenuation up to a few dB. The lack of correction for wet antenna

attenuation (WAA) has been shown to lead to a significant overestimation of rainfall estimates based on CMLs .

In order to eliminate the effect of WAA, an exponential model related to the measured attenuation was proposed by

Kharadly et al. . Later, based on the fact that measured attenuation consists of path attenuation and WAA, the literature

 extended the exponential WAA model to link it to path attenuation. Leijnse et al.  assumed a power–law relationship

between the water film thickness and the rain rate and calculated the WAA based on the water film thickness and

electromagnetic scattering theory. Some studies  also treated WAA directly as a function of rain rate. Overeem et al. 

suggested ignoring the process of antenna wetting and drying and treating WAA as constant. On the contrary, long

antenna drying and wetting processes have also been observed, and time-dependent dynamic WAA models have been

proposed . Pastorek et al.  compared the above empirical models and found that the WAA model, which is directly

related to the rain rate, performs better, and that because the parameters of the model are independent of the CML

frequency and path length, it is portable to CMLs with similar antenna characteristics. In the absence of rainfall

observations, Fencl et al.  suggest that WAA can be quantified by using short CMLs, or, if short CMLs are not available,

by statistics from CMLs and rainfall climatology. On the basis of the analysis of WAA time series, the LSTM algorithm 

has also been applied to WAA estimation. In addition, since WAA is mainly related to antenna reflectivity, Moroder et al.

 have developed a microwave measurement system that can measure attenuation and WAA simultaneously, which

may present opportunities for WAA correction.

2.4. Calibration of the γ–R Relationship and Rainfall Estimation

For the coefficients a and b in the relationship between specific rain-induced attenuation and rain rate, the International

Telecommunication Union Recommendations (ITU-R)  provide a reliable reference in the absence of microphysical

information for rainfall. However, the ITU-R model, as a statistical model fitted from global data, has been found to

potentially perform sub-optimally in localized areas in several reports . As shown in Figure 1, for the

Nanjing area, the ITU-R model would significantly overestimate rainfall under high rain rate conditions compared to the

local γ–R relationship. Therefore, based on T-matrix or the Mie scattering theory, some scholars have also utilized DSD

data to fit power–law parameters appropriate to the local climate. Using data from the disdrometer deployed in Nanjing,

China, Song et al.  estimated rainfall using the improved γ–R relationship. The study concluded that the results are

more accurate than the ITU-R model and highlighted the significance of establishing the local γ–R relationship. Han et al.

 then fit the power–law relationship for stratiform and convective rainfall separately, demonstrating superior

performance over the ITU–R relationship.

[42]

[19][23]

[43]

[44]

[45]

[46] [47]

[48] [25]

[49][50] [51]

[52]

[53]

[54]

[55]

[56][57][58][59][60]

[61]

[62]



Figure 1. Scatter plots of specific rain-induced attenuation and rain rates at different frequencies. It is worth noting that

the rain rates are obtained from an OTT Parsivel disdrometer deployed in Nanjing, whereas the specific rain-induced

attenuations are simulated using the T-matrix algorithm based on the DSD data recorded by the disdrometer.

After calibration of the power–law relationship, the path-averaged rain rate can be estimated:

(1)

2.5. Rainfall Mapping

Although line-integrated rainfall observations are certainly valuable for many hydrometeorological studies and

applications, the need to provide the spatial distribution of rainfall, i.e., generate rainfall maps from the estimations of

CMLs, is more necessary. The simplest approach is to treat the CMLs as virtual rain gauges located at their midpoint

location . However, such an assumption is not reasonable given the heterogeneity of rainfall over the path of long-

distance CMLs. Therefore, Goldshtein et al.  proposed an iterative algorithm to represent CML measurements using

multiple data points along the path. Several studies  compared the two strategies and found that the dominance of

the latter is positively correlated with the spatial variability of rainfall. Then, spatial interpolation techniques such as

inverse distance weighting (IDW) and ordinary kriging (OK) can be employed to reconstruct sparse rainfall estimates to

continuous spatial distribution. Eshel et al.  quantitatively analyzed the performance of different interpolation algorithms.

The results showed the OK algorithm, which uses more priori information, performs slightly better than IDW. More

sophisticated algorithms that consider rainfall inhomogeneity over the paths of CMLs include tomographic analysis

techniques , the block kriging type approach , stochastic reconstruction algorithms  and the compressed

sensing theory . Furthermore, the literature  reported that CMLs can provide information on the spatial

structure of rainfall fields and that the error in the estimation of the spatial autocorrelation function is only 5%.
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