Bacterial Plant Biostimulants

Subjects: Environmental Sciences Contributor: Abdul Gafur

Plant biostimulants are an important tool for modern agriculture as part of an integrated crop management (ICM) system, helping make agriculture more sustainable and resilient. Plant biostimulants contain substance(s) and/or microorganisms whose function when applied to plants or the rhizosphere is to stimulate natural processes to enhance plant nutrient uptake, nutrient use efficiency, tolerance to abiotic stress, biocontrol, and crop quality.

Keywords: abiotic stress ; ethylene ; jasomic acid

1. Introduction

The global environment is changing continuously and the incidence of global warming caused by extreme climatic events is also on the rise, consequently disturbing the world ecosystems, including agro-ecosystems [1]. Such extreme changes in climate can affect the quality and quantity of crops severely by inducing various environmental stresses to crops, threatening food security worldwide ^[2]. An increase in global temperature, atmospheric CO₂ level, tropospheric O₃, and acid rains can cause multifarious chronic stresses to plants, reducing their capability to respond in case of pathogen attacks [3]. Among these stresses, drought, water scarcity, and soil salinization are the most problematic and complicated factors of agricultural losses resulting from human-induced climate changes ^[4]. Fluctuations in temperature and rainfall variations are key indicators of environmental stresses ^[5]. Elevated temperatures lead to an amplification of the rates of respiration and evapotranspiration in crops, a higher infestation of pests, shifts in weed flora patterns, and reduction in crop duration ^[6]. Water scarcity is also considered one of the prime global issues that have direct effects on agricultural systems and according to climate projections, its severity will increase in the future ^[Z]. Water scarcity piercingly influences a crop's gaseous exchange capacity, causing the closure of stomata [8]. This leads to the impairment of the evapotranspiration and photosynthetic activities of plants, affecting overall biomass production ^[9]. Impaired evapotranspiration reductions also affect the nutrient uptake ability of plants ^[B]. In semi-arid and arid climatic zones where rainfalls are already less intense and sporadic, the damages caused by drought stress can be exacerbated due to excessive accumulation of salts in soil [10].

Furthermore, the liberal use of inorganic fertilizers and pesticides to increase crop productivity and meet the food requirement of the ever-growing human population, which is projected to reach 9.7 billion by 2050, has severely affected the health of agro-ecosystems and human beings. Confrontational challenges of improving agriculture production with limited arable land rely on sustainable technologies. Several technical advances have been suggested in the past three decades to increase the productivity of agricultural production processes by reducing toxic agrochemical substances such as pesticides and fertilizers. An emerging technology tackling these critical problems includes the creation of novel plant biostimulants and successful methods for their application [11][12][13][14][15]. Plant biostimulants differ from other agricultural inputs such as fertilizers and plant protection products because they utilize different mechanisms and work regardless of the presence of nutrients in the products. They also do not take any direct action against pests or diseases and therefore complement the use of fertilizers and plant protection products. According to the latest European Regulation (EU 2019/1009), a biostimulant is an EU fertilizer that seeks to promote processes for plant feeding, regardless of the product's nutrient quality, solely to boost the following plant or plant rhizosphere characteristics: (i) increased nutrient utilization efficiency, (ii) abiotic stress alleviation/tolerance, (iii) quality traits, and (iv) soil or rhizosphere supply of stored nutrients [16][17]. Over the past decade, microbiome research has changed our understanding of the complexity and composition of microbial communities. The intense interest of industry and academics in biostimulants based on live microbes has increased due to the reason that the growth and development of a plant can be improved under field conditions more effortlessly than other biostimulants [18][19]. Biostimulants are not nutrients, but encourage the utilization of nutrients or help foster plant growth or plants' resistance/tolerance to various types of stresses ^{[9][20]}. Beneficial plant fungi and bacteria can be considered the most promising microbial biostimulants [21]. The recent trend has underscored the fact that plants are not autonomous agents in their environments but are associated with bacterial and fungal microorganisms,

and that many external and internal microbial interactions respond to biotic and abiotic stresses ^{[22][23]}. Therefore, biostimulants are gradually being incorporated into production systems to alter physiological processes in plants to maximize productivity ^[24].

Bacterial plant biostimulants (BPBs) comprise a major category of plant biostimulants. Plant growth-promoting rhizobacteria (PGPR) that colonize the plant rhizosphere are the most prominent group in this category ^[24]. These PGPR improve plant growth, control plant pathogens, improve nutrient and mineral uptake in plants, and increase plants' resistance to various types of biotic stresses and tolerance towards abiotic stresses (<u>Figure 1</u>). The representative beneficial groups of PGPR-based BPBs include nitrogen-fixing *Rhizobium*, *Azotobacter* spp., *Azospirillum* spp., *Pseudomonas* spp., and *Bacillus* spp. ^{[25][26]}.

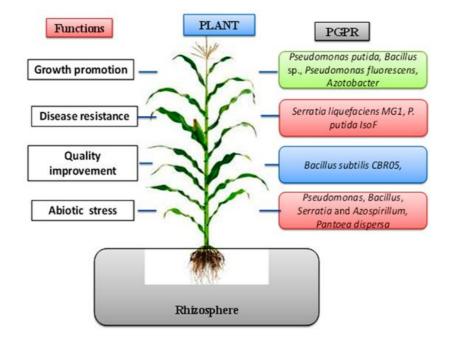


Figure 1. The beneficial influence of PGPR on crop plants.

2. Global Market for PGPR-Based Biostimulants

Biostimulants are emerging as an essential component in sustainable agricultural practices. Instances of environmental hazards and soil contamination from injudicious and excessive application of chemical-based products on crops have been a key issue for the industry in recent times. The global biostimulants market size was estimated at USD 1.74 billion in 2016, and projected to expand at a Compound Annual Growth Rate (CAGR) of 10.2% from 2017 to 2025. A rising focus on enhanced productivity, coupled with rapid soil degradation, is likely to drive the market over the forecast period. The global biostimulants market size was estimated at USD 2.30 billion in 2019 and is expected to reach USD 2.53 billion in 2020. The global biostimulants market is expected to grow at a compound annual growth rate of 10.2% from 2017 to 2025 to reach USD 4.14 billion by 2025 ^[27]. Although not all biostimulants are biological in nature ^[28], the bacteria are ancestral companions of a plant in all conditions. Moreover, according to the currently available literature, less than 25% of the commercial products of biostimulants are microbial based ^[9]. <u>Table 1</u> provides a list of some popular PGPR-based commercial biostimulants ^{[29][30][31]}. Although some formulations contain fungal associations, the preparations are mainly based on PGPR.

	Table 1. Examples of	commercial PGPR-based plant biostimulants	[<u>29][30][31]</u>
--	----------------------	---	----------------------

Commercial Products (Manufacturer)	PGPR Strains	Target Crops for Use	Target of Function
FZB24 [®] fl Rhizovital 42 [®] (ABiTEP GmbH, Germany)	Bacillus amyloliquefaciens and B. amyloliquefaciens sp. plantarum	Ornamentals, vegetable field crops	Phosphate availability and protection against pathogens

Commercial Products Manufacturer)	PGPR Strains	Target Crops for Use	Target of Function
Inomix [®] Biostimulant, Inomix [®] phosphore, and Inomix [®] Biofertilisant (IAB (labiotec), Spain)	B. subtilis (IAB/BS/F1) and B. polymyxa (IAB/BP/01); Saccharomyces cerevisiae; B. megaterium and P. fluorescens; and Rhizobium leguminosarum, Azotobacter vinelandii, B. megaterium, and Saccharomyces cerevisiae	Cereals	Plant growth promotion increases root and shoot weight, strong root system
BactoFil B10 [®] (AGRO.bio Hungary Kft., Hungary)	Azotobacter vinelandii, Azospirillum lipoferum, P. fluorescens, B. circulans, B. megaterium, and B. subtilis	Dicotyledons (potato, sunflower, rapeseed)	Soil amelioration; produce plant growth-promoting hormones auxin, gibberellins and kinetin; N ₂ fixation; a biocontrol agent
Bio-Gold (BioPower, Sri Lanka)	Pseudomonas fluorescens and Azotobacter chroococcum	All agricultural and horticultural crops	Growth promotion via nitroge fixation, drought tolerance, control of root rot and wilt diseases, phosphorus solubilization
Cedomon [®] (Lantmannen BioAgri AB, Sweden)	P. chlororaphis	Barley and oats	Highly effective against various types of seed-borne diseases
<i>Rhizosum</i> N Liquid PSA (Mapleton Agri Biotec Pty Limited, Australia)	Azotoformans (N ₂ -fixing bacteria) and Pseudomonas sp.	Wheat	Phosphate availability, N ₂ fixation, plant growth promotion
BactoFil A10 [®] (AGRO.bio Hungary Kft., Hungary)	Azotobacter vinelandii, Azospirillum brasilense, P. fluorescens, B. polymyxa, and B. megaterium	Monocotyledons (cereals)	Increased soil nutrient conter that results in plant growth promotion
Micosat F [®] Uno; Micosat F [®] Cereali (CCS Aosta Srl, Italy)	Agrobacterium radiobacter AR 39, Streptomyces sp. SB 14, and B. subtilis BA 41	Fruits, vegetables, and flowers	Increased nutrient and wate absorption, increases stres tolerance and enhances ISI
	Paenibacillus durus PD 76, B. subtilis BR 62, and Streptomyces spp. ST 60	Cereals, soybeans, beet, tomatoes, and sunflowers	
Bioscrop BT16 (Motivos Campestres, Portugal)	Bacillus thuringiensis var. kurstaki	Deciduous fruit trees, horticultural brassicas, cotton, citrus, cauliflower, olives, pepper, banana, and tomato	Protection against pests (beetles)
Amase [®] (Lantmannen Bioagri, Sweden)	Rhizobium, Azotobacter, Pseudomonas, Bacillus, and Chaetomium	Cucumber, lettuce, tomato, pepper, eggplant, cabbage, and broccoli	Growth promotion, quick production of the large and strong root system, and increases stress tolerance
PGA [®] (Organica technologies, USA)	Bacillus sp.	Fruits and vegetables	Improved biomass accumulation, stress toleranc
Nitroguard®	Azorhizobium caulinodens NAB38, Azospirillum brasilense NAB317, Azoarcus indigens NAB04, and Bacillus sp.	Cereals, rapeseed, and sugar	Growth promotion via nitroge fixation
TwinN [®] (Mapleton Agri Biotec Pty Ltd. Australia)	Azospirillum brasilense NAB317, Azoarcus indigens NAB04, and A. caulinodens NAB38		Helps with nitrogen fixation and phosphorus solubilization and produces growth- promoting hormones
Symbion [®] -N, Symbion [®] -P, and Symbion [®] -K (T. Stanes & Company	bion [®] -N, <i>Rhizobium</i> , <i>Azotobacter</i> , vegetabl n [®] -P, and <i>Azospirillum</i> , <i>Acetobacter</i> ; bion [®] -K <i>B. megaterium</i> var.		Promotion of plant growth, improved root and shoot weight, and a stronger root system

Commercial Products (Manufacturer)	PGPR Strains	Target Crops for Use	Target of Function
Ceres [®] (Biovitis, France)	Pseudomonas fluorescens	Field and horticultural crops	Biocontrol agent against pathogens
Gmax [®] PGPR (Greenmax AgroTech, India)	P. fluorescens, Azotobacter, and phosphobacteria	Field crops	Nitrogen and phosphatic nutrition, disease prevention and helps in plant growth promotion.

References

- 1. Ebert, A.W.; Engels, J.M. Plant Biodiversity and Genetic Resources Matter! Plants 2020, 9, 1706.
- 2. Shahzad, A.; Ullah, S.; Dar, A.A.; Sardar, M.F.; Mehmood, T.; Tufail, M.A.; Shakoor, A.; Haris, M. Nexus on climate chan ge: Agriculture and possible solution to cope future climate change stresses. Environ. Sci. Pollut. Res. 2021, 7, 1–22.
- Sangiorgio, D.; Cellini, A.; Donati, I.; Pastore, C.; Onofrietti, C.; Spinelli, F. Facing climate change: Application of microbi al biostimulants to mitigate stress in horticultural crops. Agronomy 2020, 10, 794.
- 4. Del Buono, D. Can biostimulants be used to mitigate the effect of anthropogenic climate change on agriculture? It is tim e to respond. Sci. Total. Environ. 2020, 751, 141763.
- Raza, A.; Razzaq, A.; Mehmood, S.S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J. Impact of climate change on crops adaptation a nd strategies to tackle its outcome: A review. Plants 2019, 8, 34.
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sust ainability 2021, 13, 1318.
- Mancosu, N.; Snyder, R.L.; Kyriakakis, G.; Spano, D. Water scarcity and future challenges for food production. Water 2 015, 7, 975–992.
- 8. Kałużewicz, A.; Bosiacki, M.; Spiżewski, T. Influence of biostimulants on the content of macro-and micronutrients in bro ccoli plants exposed to drought stress. J. Elem. 2018, 23, 287–296.
- 9. Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulants application in horticultural crops under abiotic stress conditions. Ag ronomy 2019, 9, 306.
- 10. Daneshmand, H.; Alaghmand, S.; Camporese, M.; Talei, A.; Yeh, P.J.F.; Daly, E. Long-term impacts of partial afforestati on on water and salt dynamics of an intermittent catchment under climate change. Water 2020, 12, 1067.
- 11. Bulgari, R.; Cocetta, G.; Trivellini, A.; Vernieri, P.; Ferrante, A. Biostimulants and crop responses: A review. Biol. Agric. Hort. 2015, 31, 1–17.
- 12. Colla, G.; Rouphael, Y. Biostimulants in horticulture. Sci. Hortic. 2015, 196, 1–2.
- 13. Yakhin, O.I.; Lubyanov, A.A.; Yakhin, I.A.; Brown, P.H. Biostimulants in plant science: A global perspective. Front. Plant Sci. 2017, 7, 2049.
- 14. Rouphael, Y.; Colla, G. Synergistic biostimulatory action: Designing the next generation of plant biostimulants for sustai nable agriculture. Front. Plant Sci. 2018, 9, 1655.
- 15. Chiaiese, P.; Corrado, G.; Colla, G.; Kyriacou, M.C.; Rouphael, Y. Renewable sources of plant biostimulation: Microalga e as a sustainable means to improve crop performance. Front. Plant Sci. 2018, 9, 1782.
- 16. Rouphael, Y.; Colla, G. Toward sustainable agriculture through plant biostimulants: From experimental data to practical applications. Agronomy 2020, 10, 1461.
- 17. E.U. Regulation of the European Parliament and the Council Laying Down Rules on the Making Available on the Marke t of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No. 1107/2009 and Repealing Re gulation (EC) No 2003/2003. 2019. Available online: (accessed on 11 January 2021).
- Szczałba, M.; Kopta, T.; Gąstoł, M.; Sękara, A. Comprehensive insight into arbuscular mycorrhizal fu ngi, Trichoderma spp. and plant multilevel interactions with emphasis on biostimulation of horticultural crops. J. Appl. Microbiol. 2019, 12 7, 630–647.
- Wozniak, E.; Blaszczak, A.; Wiatrak, P.; Canady, M. Biostimulant Mode of Action: Impact of Biostimulant on Whole-Plan t Level. In The Chemical Biology of Plant Biostimulants; Geelan, D., Xu, L., Eds.; Wiley Online Library: Hoboken, NJ, U SA, 2020; pp. 205–227.
- 20. Brown, P.; Saa, S. Biostimulants in agriculture. Front. Plant Sci. 2015, 6, 671.

- 21. Ruzzi, M.; Aroca, R. Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Sci. Hort. 2015, 196, 124 –134.
- 22. Vandenkoornhuyse, P.; Quaiser, A.; Le Van Duhamel, M.; Dufresne, A. The importance of the microbiome of the plant h olobiont. New Phytol. 2015, 206, 1196–1206.
- 23. Ratiu, I.A.; Al-Suod, H.; Ligor, M.; Monedeiro, F.; Buszewski, B. Effects of growth conditions and cultivability on the cont ent of cyclitols in Medicago sativa. Int. J. Environ. Sci. Technol. 2020, 18, 33–48.
- 24. Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hort. 2015, 196, 3–14.
- 25. Lugtenberg, B. Principles of Plant-Microbe Interactions: Microbes for Sustainable Agriculture; Lugtenberg, B., Ed.; Spri nger: Cham, Switzerland, 2015; pp. 1–15.
- 26. Rouphael, Y.; Colla, G. Biostimulants in Agriculture. Front. Plant Sci. 2020, 11, 40.
- 27. Dunhamtrimmer.com. 2018. Available online: (accessed on 11 January 2021).
- 28. Woo, S.L.; Pepe, O. Microbial consortia: Promising probiotics as plant biostimulants for sustainable agriculture. Front. Plant Sci. 2018, 9, 1801.
- 29. Le Mire, G.; Nguyen, M.; Fassotte, B.; du Jardin, P.; Verheggen, F.; Delaplace, P.; Jijakli, H. Implementing biostimulants and biocontrol strategies in the agroecological management of cultivated ecosystems. Biotechnol. Agron. Société Envir on. 2016, 20, 1–15.
- Aamir, M.; Rai, K.K.; Zehra, A.; Dubey, M.K.; Kumar, S.; Shukla, V.; Upadhyay, R.S. Microbial bioformulation-based pla nt biostimulants: A plausible approach toward next generation of sustainable agriculture. In Microbial Endophytes; Woo dhead Publishing: Cambridge, UK, 2020; pp. 195–225.
- Mishra, J.; Arora, N.K. Bioformulations for plant growth promotion and combating phytopathogens: A sustainable appro ach. In Bioformulations: For Sustainable Agriculture; Springer: New Delhi, India, 2016; pp. 3–33.

Retrieved from https://encyclopedia.pub/entry/history/show/20250