
Cutaneous Squamous Cell Carcinoma (CSCC)
Subjects: Pharmacology & Pharmacy

Contributor: Natalia García

Cutaneous squamous cell carcinoma (CSCC) is the second most frequent cancer in humans and its incidence continues

to rise. Although CSCC usually display a benign clinical behavior, it can be both locally invasive and metastatic. The

signaling pathways involved in CSCC development have given rise to targetable molecules in recent decades. In addition,

the high mutational burden and increased risk of CSCC in patients under immunosuppression were part of the rationale

for developing the immunotherapy for CSCC that has changed the therapeutic landscape. Several drugs have been

developed for CSCC treatment, but the disease may actually be induced by drugs as well. Molecular mechanisms

underlie pharmacologically-induced CSCC, and a sound knowledge of them could help physicians better tackle this

tumor. 
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1. Immunosuppressive Drugs and CSCC

The immunosuppressive therapy used in organ transplant recipients (OTRs) to prevent allograft rejection promotes

cutaneous infection and skin neoplasms . The classic immunosuppressant drugs used for organ transplantation are

glucocorticosteroids (prednisone and prednisolone), calcineurin inhibitors (cyclosporine and tacrolimus), and anti-

proliferative agents (azathioprine and mycophenolic acid). Here we focus on cyclosporine and azathioprine.

1.1. Cyclosporine and CSCC

Cyclosporine is a calcineurin inhibitor that increases the risk of CSCC, especially under UVR . Cyclosporine A

reduces UVB-induced DNA damage repair and inhibits apoptosis in human keratinocytes by inhibiting the nuclear factor of

activated T-cells (NFAT) . Calcineurin inhibition is known to selectively induce the expression of activating transcription

factor 3 (ATF3), which downregulated p53 expression and increased CSCC formation in a mouse model and in human

CSCCs . In vitro studies demonstrated that chronic treatment of human HaCaT keratinocytes with cyclosporine

enhances AKT activation by suppressing PTEN, and promotes tumor growth of the CSCC A431 cell line in immune-

deficient nude mice . Furthermore, cyclosporine enhances epithelial-to-mesenchymal transition involving the

upregulation of TGFβ signaling .

The increased risk of CSCC in patients under cyclosporine has led physicians to search for different options. Some

studies of tacrolimus, a calcineurin inhibitor introduced to replace cyclosporine, demonstrated no difference in a

comparison of overall cancer rates of the two drugs ; however, more recent data from a clinical trial and from in vivo

studies indicate a lower skin cancer risk associated with tacrolimus . Nevertheless, the most important drugs for

preventing cyclosporine-induced CSCC development are the mTOR inhibitors.

The newest immunosuppressants used for OTRs are sirolimus (rapamycin) and everolimus. Both inhibit interleukin (IL)-2

and IL-15 via mTOR. It is not known whether these inhibitors have anticarcinogenic effects . Preliminary data suggest

that conversion from calcineurin inhibitors to sirolimus reduces the incidence of skin cancer in renal graft recipients ,

possibly because sirolimus reduces vascularization and the thickness of post-transplant CSCCs . The change of

therapy from calcineurin inhibitors to sirolimus in patients with one CSCC lowered the risk of a new CSCC, and metastasis

events only occurred in patients who received calcineurin inhibitors , the effect being maintained over five years of

follow-up . In vivo studies of hairless mice show that sirolimus significantly increases the latency of large tumors and

reduces their multiplicity. Tumors from the rapamycin group have a lower UV-signature p53 mutation rate . Case

reports of conversion to everolimus show a reduced likelihood of CSCC development .
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Recent studies have shown that cyclosporine exposure upregulates IL-22R1  and causes increased JAK1, STAT1, and

STAT3 expression. Using ruxolitinib, an FDA-approved JAK1/2 inhibitor, in human CSCC cells and xenografts reduces

proliferation and growth. This could be a feasible option for preventing CSCC in OTRs who face long-term

immunosuppression .

1.2. Azathioprine and CSCC

In a cohort study of 361 renal transplant recipients, the immunosuppressant drug azathioprine increased the risk of CSCC

2.4-fold ; and in an organ transplantation cohort of 207 patients, post-transplant azathioprine treatment increased the

risk of CSCC compared with controls in a dose-dependent manner . A systematic review and meta-analysis of 27

studies confirmed the association of OTRs treated with azathioprine and CSCC . It is clear that azathioprine enhances

the effect of UVR on skin cancer risk, and indeed, it strongly induces and promotes CSCC in hairless mice exposed to

UVR . Azathioprine photosensitizes the skin to UVR by changing the absorption interval of DNA upon incorporation of

6-thioguanine, the active metabolite of azathioprine. UVR absorption then induces the formation of reactive oxygen

species that have been linked to DNA damage and cutaneous malignancies . Whole-exome sequencing has

revealed a novel CSCC mutational signature, which is associated with chronic exposure to azathioprine .

To reduce the risk of CSCC associated with this drug, azathioprine can be replaced by mycophenolate, leading to lower

levels of DNA 6-thioguanine, skin ultraviolet A (UVA) sensitivity, and DNA damage, and a lower risk of CSCC .

However, another study suggests that the calcineurin inhibitor tacrolimus and mycophenolate mofetil (MMF) inhibit UVB-

induced DNA damage repair, demonstrating the tumor-promoting action of these immunosuppressants .

1.3. Voriconazole and CSCC

Voriconazole, an antifungal used to prevent and treat invasive fungal infections after lung transplantation, has been

associated with an increased risk of developing CSCC . Voriconazole causes photosensitivity  in a dose-dependent

manner . The mechanism underlying this may arise from a primary metabolite, voriconazole N-oxide, which absorbs

UVA and UVB wavelengths . Expression arrays of in vitro cultures of primary human keratinocytes exposed to

voriconazole also show that this drug inhibits terminal epithelial differentiation pathways, resulting in poor formation of

epithelial layers that are important for photoprotection, favoring its phototoxicity . In vitro and in vivo assays

demonstrated that voriconazole and its product inhibit catalase, raising intracellular levels of UV-associated oxidative

stress and DNA damage in keratinocytes to promote skin carcinogenesis . While photoprotection is fundamental for

preventing CSCC, this is especially important in patients under voriconazole.

2. Targeted Therapies and CSCC

2.1. Sonic-Hedgehog Inhibitors and CSCC

Medications to treat other skin cancers, such as melanoma and basal cell carcinoma (BCC), can paradoxically lead to the

development of CSCC. Vismodegib is a smoothened inhibitor (Hedgehog pathway inhibitor) that the FDA and EMA have

approved for treating locally advanced and metastatic BCC . The association of vismodegib with CSCC was reported in

several case reports , and a retrospective cohort study highlighted this increased risk . Some researchers

disputed the latter study , and a subsequent paper failed to replicate such an association . Furthermore, squamous

metaplasia has been found in BCCs treated with vismodegib . Nevertheless, there is some evidence to suggest that

hedgehog inhibitors may indeed increase the risk of CSCC. The mechanism of action of vismodegib to promote CSCC is

thought to be the activation of the RAS/MAPK pathway, which is responsible for CSCC progression .

A CSCC may arise from a BCC because both develop from the same target cell, as some authors have suggested. Two

studies revealed new roles for Ptch1 that lie at the nexus between BCC and CSCC formation . Ptch1 gene is

thought to occupy a critical role in determining the basal or squamous cell lineage , and its polymorphisms are involved

in cell fate decisions. In BCC, loss of Ptch1 activates the Sonic-Hedgehog pathway, but the overexpression of Ptch1
promotes an alternative cell-fate decision, leading to increased CSCC susceptibility .

2.2. BRAF Inhibitors and CSCC

BRAF is mutated in around 50% of melanomas, and some years ago, the therapeutic landscape of this tumor broadened

through the development of BRAF inhibitors , specifically vemurafenib and dabrafenib . These drugs provided

greater overall survival and PFS compared with dacarbazine , but they also increased the risk of CSCC

development . The effectiveness of these drugs stems from their ability to attenuate the MAPK pathway, which is
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downstream of constitutive BRAF activation . However, BRAF inhibitors are capable, paradoxically, of activating the

MAPK pathway in cells containing non-mutated BRAF, and this pathway is essential for CSCC development .

The inhibition of MEK proved to be effective in preventing CSCC while on BRAF inhibitors, and thereafter BRAF inhibitors

were combined with MEK inhibitors to avoid these side effects. Specifically, vemurafenib is combined with cobimetinib ,

and dabrafenib with trametinib . A meta-analysis of five phase III randomized controlled trials, 17 phase II trials, and

two phase IV trials  demonstrated that combined BRAF and MEK inhibition (trametinib) reduces the incidence of CSCC

relative to BRAF monotherapy, as seen in another study . More recent work demonstrated that BRAF inhibitors induce

RAS mutations that are essential for MAPK activation. RAS mutations were detected in 21%–60% of lesions after BRAF

inhibitor treatment in contrast to 3%–30% in normal CSCCs . A mutational signature has been noted in squamous

proliferative lesions induced by BRAF inhibitors that differs from the mutation pattern seen in spontaneous CSCCs .

Additionally, human papillomaviruses (HPVs) are detected more frequently in BRAF inhibitor-induced CSCCs, which

means that HPV might accelerate keratinocyte oncogenesis in this subset of patients .

Other than MEK inhibitors, the inhibition of cyclooxygenase (COX)-2 has been evaluated as a strategy to prevent BRAF-

inhibitor-mediated CSCC development. Experimental investigations that induce CSCC carcinogenesis by UVR have

shown that COX-2 inhibitors (celecoxib and diclofenac) decrease prostaglandin production, thereby mitigating CSCC

development . Moreover, celecoxib delayed the onset of CSCC in a mouse model mediated by DMBA/TPA and of

CSCC induced by the BRAF inhibitor PLX7420, reducing the tumor burden by 90% . All the drugs that may contribute

to the development of CSCC are listed in Table 1.

Table 1. Pharmacologically-induced CSCC.

Drug Treatment Mechanisms to Promote CSCC Options to Reduce CSCC Risk

Cyclosporine Immunosuppressant

Reduces UVB-induced DNA damage repair and
inhibits apoptosis by inhibiting nuclear factor

of activated T-cells (NFAT) 

Sirolimus and everolimus 

Induces the expression of ATF3, which
downregulates p53 and increases CSCC

formation 

Enhances AKT activation by suppressing
PTEN and promotes tumor growth 

Enhances epithelial-to-mesenchymal transition
involving the upregulation of TGFβ

signaling 

Azathioprine Immunosuppressant

Photosensitizes the skin to ultraviolet radiation
(UVR) by changing the absorption interval of
DNA upon incorporation of 6-thioguanine and

induces the formation of reactive oxygen
species 

Mycophenolate mofetil 

Voriconazole Antifungal

The primary metabolite, voriconazole N-oxide,
absorbs UVA and UVB wavelengths and

causes photosensitivity 

Photoprotection

Inhibits terminal epithelial differentiation
pathways resulting in poor formation of
epithelial layers that are important for

photoprotection 

Inhibits catalase, raising intracellular levels of
UV-associated oxidative stress and DNA

damage 

Vismodegib
(Sonic-hedgehog

inhibitor)

Basal cell
carcinoma Activates RAS-MAPK pathway Close follow-up

Vemurafenib and
dabrafenib (BRAF

inhibitors)
Melanoma Activate, paradoxically, MAPK pathway and

induce RAS mutations 

BRAF inhibitors + MEK
inhibitors   or

BRAF inhibitors +
cyclooxygenase (COX)-2

inhibitors 
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