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Infrared and visible image fusion technologies make full use of different image features obtained by different sensors,

retain complementary information of the source images during the fusion process, and use redundant information to

improve the credibility of the fusion image.
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1. Introduction

Under normal conditions, objects will radiate electromagnetic waves of different frequencies, which is called thermal

radiation. It is difficult for people to see thermal radiation information with the naked eye . It is necessary to use different

sensors  to process the infrared image to obtain its thermal radiation information, which has good target

detection ability . Infrared images can avoid the influence of the external environment, such as sunlight, smoke, and

other conditions . However, infrared images have low contrast, complex background, and poor feature performance.

Visible images are consistent with the human eye’s visual characteristics and contain many edge features and detailed

information . The use of visible light sensors to obtain image spectral information is richer, scene details and textures

are clear, and spatial resolution is high. However, due to the external environment’s influence, such as night environment,

camouflage, smoke hidden objects, background clutter, etc., the target may not be easily observed in the visible image.

Therefore, infrared and visible light fusion technology combines the two’s advantages and retains more infrared and

visible feature information in the fusion result . Due to the universality and complementarity of infrared images and

visible images, the fusion technology of infrared and visible images has been applied to more fields and plays an

increasingly important role in computer vision. Nowadays, the fusion method of infrared and visible images have been

widely used in target detection , target recognition , image enhancement , remote sensing detection , agricultural

automation , medical imaging , industrial applications .

According to different image fusion processing domains, image fusion can be roughly divided into two categories: the

spatial and transform domains. The focus of the fusion method is to extract relevant information from the source image

and merge it . Current fusion algorithms can be divided into seven categories, namely, multi-scale transform , sparse

representation , neural network , subspace , saliency , hybrid models , and deep learning . Each type of

fusion method involves three key challenges, i.e., image transform, activity-level measurement, and fusion rule

designing . Image transformation includes different multiscale decomposition, various sparse representation methods,

non-downsampling methods, and a combination of different transformations. The goal of activity level measurement is to

obtain quantitative information to assign weights from different sources . The fusion rules include the big rule and the

weighted average rule, the essence of which plays the role of weight distribution . With the rapid development of fusion

algorithms in theory and application, selecting an appropriate feature extraction strategy is the key to image fusion. It is

still challenging to design a suitable convolutional neural network and adjust the parameters based on deep learning

image fusion. Especially in recent years, after generating a confrontation network for image fusion, although it brings a

clearer fusion effect, it also needs to consider the inevitable gradient disappearance and gradient explosion of the

generation confrontation training.

In the field of image fusion, a variety of different infrared and visible image fusion methods have been proposed in recent

years. However, there are still some challenges in different infrared and visible image fusion applications. The commonly

seen fusion method is to select the same salient features of the source image and integrate them into the fusion image to

contain more detailed information. However, the infrared heat radiation information is mainly characterized by pixel

intensity, while edges and gradients characterize the visible image’s texture detail information. According to the different

imaging characteristics of the source image, the selection of traditional manually designed fusion rules to represent the

fused image, in the same way, will lead to the lack of diversity of extracted features, which may bring artifacts to the fused

image. Moreover, for multi-source image fusion, manual fusion rules will make the method more and more complex. In

view of the above problems, the image fusion method based on deep learning can assign weights to the model through an
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adaptive mechanism . Compared with the design rules of traditional methods, this method greatly reduces the

calculation cost, which is crucial in many fusion rules. Therefore, this research aims to conduct a detailed review of the

existing deep learning-based infrared and visible image fusion algorithms and discuss their future development trends and

challenges. Second, this article also introduces the theoretical knowledge of infrared and visible image fusion and the

corresponding fusion evaluation index. This survey also makes a qualitative and quantitative comparison of some related

articles’ experiments to provide a reliable basis for this research. Finally, we summarized the fusion methods in recent

years and analyzed future work trends.

2. Fusion Methods of Infrared and Visible Images Based on Deep Learning

In this section, we comprehensively review the infrared and visible image fusion methods based on deep learning.

Increasing new methods of using deep learning for infrared and visible image fusion have been produced in recent years.

These state-of-the-art methods are widely used in many applications, like image preprocessing, target recognition, and

image classification. The traditional fusion framework can be roughly summarized in Figure 2. The two essential factors of

these algorithms are feature extraction and feature fusion. Their main theoretical methods can be divided into multiscale

transformation, sparse representation, subspace analysis, and hybrid methods. However, these artificially designed

extraction methods make the image fusion problem more complicated due to their limitations. In order to overcome the

limitations of traditional fusion methods, deep learning methods are introduced for feature extraction. In recent years, with

the development of deep learning, several fusion methods based on convolutional neural network (CNN), generative

adversarial networks (GAN), Siamese network, and autoencoder have appeared in the field of image fusion. The main

fusion methods involved in this section are listed in Table 1 by category. Image fusion results based on deep learning have

good performance, but many methods also have apparent challenges. Therefore, we will introduce the details of each

method in detail.

Figure 2. Traditional image fusion framework.

Table 1. The overview of some deep learning (DL)-based fusion methods.

Families of Fusion
Methods Ref. Innovation

CNN method of DL

VGG-19; L1 norm; weighted average strategy; maximum selection strategy

Dense net

Minimize the total change

ZCA-zero-phase component analysis; L1-norm; weighted average strategy

Elastic weight consolidation

Perceptual loss; use two convolutional layers to extract image features; weight sharing
strategy

Adaptive information preservation strategy

MLF-CNN; weighting summation strategy

Mixed loss function (M-SSIM loss; TV loss); adaptive VIF-Net

Siamese network of DL

Fusion strategy of local similarity; weighted average

Pixel-level image fusion; feature tracking

Dual Siamese network; weight sharing strategy

Saliency map; three-level wavelet transform
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Families of Fusion
Methods Ref. Innovation

GAN of DL

The confrontation between generator and discriminator

Learnable group convolution

Adversarial generation network with dual discriminators

Detail loss; target edge loss

Local binary pattern

Pre-fused image as the label

Autoencoder of DL

Automatic coding feature extraction strategy of generator

Combination of autoencoder and dense network

RGB encoder; infrared encoder; decoder used to restore the resolution of the feature map

2.1. CNN-Based Fusion Methods

In computer vision, convolutional layers play an important role in feature extraction and usually provide more information

than traditional manual feature extraction methods . The critical problem of image fusion is how to extract salient

features from the source images and combine them to generate the fused image. However, CNN has three main

challenges when applied to image fusion. First, training a good network requires much labeled data. However, the image

fusion architecture based on the convolutional neural network is too simple, and the convolutional calculation layer in the

network framework is less, and the features extracted from the image are insufficient, resulting in poor fusion

performance. Second, the artificially designed image fusion rules are challenging to realize the end-to-end model network,

and some errors will be mixed in the feature reconstruction process, which will affect the feature reconstruction of the

image. Finally, the efficient information of the last layer is ignored in the traditional convolutional neural network algorithm,

so that the model features cannot be fully retained. With the deepening of the network, the feature loss will become

severe, resulting in a worsening of the final fusion effect.

In , Liu et al. proposed a fusion method based on convolutional sparse representation (CSR). In their method, the

authors use CSR to extract multilayer features and then use them to generate fusion images. In , they also proposed a

fusion method based on a convolutional neural network (CNN). They use image patches containing different feature

inputs to train the network and obtain a decision graph. Finally, the fusion image is obtained by using the decision graph

and the source image. Li et al.  proposed a simple and effective infrared and visible image fusion method based on a

deep learning framework. The article divides the source image information into two parts, the former contains low-

frequency information, and the latter contains texture information. The model is based on the multilayer fusion strategy of

the VGG-19 network  through which the deep features of the detailed content can be obtained. In other multiple

exposure fusion (MEF) algorithms, they rely on artificially searched features to fuse images. When the input conditions

change, the parameters will follow the change, so the robustness of the algorithm cannot be guaranteed, and processing

multiple exposure images will consume a lot. The learning ability of CNN is affected mainly by some loss functions.

Prabhakar et al. , the proposed method does not need parameter adjustment when the input changes. The fusion

network consists of three parts: the encoder, the fusion layer, and the decoder. To combine encoder networks employing

encoders. From the perspective of the CNN method, by optimizing the parameters of the loss function learning model, the

results can be predicted as accurately as possible. In , Ma et al. proposed an infrared and visible image based on the

minimization of the total variation (TV) by limiting the fusion image to have similar pixel intensity to the infrared image and

similar gradient to the visible image. In , Li et al. proposed a fusion framework based on deep features and zero-phase

component analysis. First, the residual network is used to extract the depth features of the source image, and then the

ZCA-zero-phase component analysis  and L1-norm are used for normalization to obtain the initial weight map. Finally,

the weighted average strategy is used to reconstruct the fused image.

Xu et al. , a new unsupervised and unified densely connected network is proposed. The densely connected network

(DenseNet)  is trained to generate a fused image adjusted on the source image in the proposed method. In addition, we

obtain a single model applicable to multiple fusion tasks by applying elastic weight consolidation to avoid forgetting what

has been learned from previous tasks when training multiple tasks sequentially, rather than train individual models for

every fusion task or jointly train tasks roughly. The weight of the two source images is obtained through the weight block,

and different feature information is retained. The model generates high-quality fusion results in processing multi-exposure

and multi-focus image fusion. In , Zhang et al. proposed an end-to-end model divided into three modules: feature
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extraction module, feature fusion module, and feature reconstruction module. Two convolutional layers are used to extract

image features. Appropriate fusion rules are adopted for the convolutional features of multiple input images. Finally, the

fused features are reconstructed by two convolutional layers to form a fused image. In , Xu et al. believe that an

unsupervised end-to-end fusion network can solve different fusion problems, including multimode, multi-exposure, and

multi-focus. The model can automatically estimate the importance of the corresponding source image features and

provide adaptive information preservation because the model has an adaptive ability to retain the similarity between the

fusion result and the source image. It dramatically reduces the difficulty of applying deep learning to image fusion-the

universality of the model and the adaptive ability of training weights. Solve the catastrophic forgetting problem and

computational complexity.

In , Chen et al. used deep learning methods to fuse visible information and thermal radiation information in

multispectral images. This method uses the multilayer fusion (MLF) area network in the image fusion stage. In this way,

pedestrians can be detected at different ratios under unfavorable lighting (such as shadows, overexposure, or night)

conditions. To be able to handle targets of various sizes, prevent the omission of some obscure pedestrian information. In

the region extraction stage, MLF-CNN designed a multiscale region proposal network (RPN)  to fuse infrared and

visible light information and use summation fusion to fuse two convolutional layers. In , to solve the lack of label dataset,

Hou et al. used a mixed loss function. The thermal infrared image and the visible image were adaptively merged by

redesigning the loss function, and noise interference was suppressed. This method can retain salient features and texture

details with no apparent artifacts and have high computational efficiency. We make an overview list of some of the image

fusion based on CNN in Table 2.

Table 2. The overview of some a convolutional neural network (CNN)-based fusion methods.

Ref. Limitation

It is only suitable for multi-focus image fusion, and only the last layer is used to calculate the result. Much useful
information obtained by the middle layer will be lost. When the network depth increases, the information loss will
become more serious.

Feature extraction will still lose some information.

In different application fields, the accuracy of the fusion result cannot be guaranteed due to the large difference in
resolution and spectrum.

The specific performance of different source images needs to be considered in a specific dataset.

A large number of samples with a complex background bring a large amount of calculation to model training.

2.2. Siamese Networks-Based Fusion Methods

Part of the difficulty of image fusion is that infrared images and visible images have different imaging methods. In order to

make the fusion image retain the relatively complete information of the two source images at the same time, a pyramid

framework is used to extract feature information from the infrared image and the visible image, respectively.

Liu et al.  recently proposed a Siamese convolutional network, especially image fusion. The network input is two source

images, while the output is a weight map for the final decision. Many high-quality natural images are applied to generate

the training dataset via Gaussian blurring and random sampling. The main characteristic of this approach is activity level

measurement, and weight assignments are simultaneously achieved with the network. In particular, the convolutional

layers and fully-connected layers could be viewed as the activity level measurement and weight assignment parts in

image fusion, respectively. Again in , Liu et al. proposed a convolutional neural network-based infrared and visible

image fusion method. This method uses the Siamese network to obtain the network weight map. The weight map

combines the pixel activity information of the two source images. The model has mainly divided into four steps: the

infrared image and the visible image are passed into the convolutional neural network to generate weights; the Gaussian

pyramid is used to decompose the weight of the source image, and the two source images are decomposed by the

Laplacian pyramid respectively. The information obtained by the decomposition of each pyramid is fused with coefficients

in a weighted average manner. Figure 3 clearly explains the working principle of the Siamese network in the fusion

process. In , Zhang et al. believe that CNN has a powerful feature representation ability and can produce good tracking

performance. Still, the training and updating of the CNN model are time-consuming. Therefore, in this paper, the Siamese

network is used for pixel-level fusion to reduce time consumption. First, the infrared and visible images are fused and then

put into the Siamese network for feature tracking. In , Zhang et al. used a fully convolutional Siamese network fusion

tracking method. SIamFT uses a Siamese network, a visible light network, an infrared network. They are used to process

visible and infrared images, respectively. The backbone uses the SiamFC network, the visible light part of the network

[41]

[42]

[62]

[43]

[57]

[36]

[37]

[40]

[42]

[58]

[44]

[45]

[46]



weight sharing, and the infrared part of the network weight sharing. The operating speed is about   FPS so

that it can meet real-time requirements. In , Piao et al. designed an adaptive learning model based on the Siamese

network, which automatically generates the corresponding weight map through the saliency of each pixel in the source

image to reduce the number of traditional fusion rules. The parameter redundancy problem. This paper uses a three-level

wavelet transform to decompose the source image into a low-frequency weight map and a high-frequency weight map.

The scaled weight map is used to reconstruct the wavelet image to obtain the corresponding fused image. This result is

more consistent with the human visual perception system. There are fewer undesirable artifacts. We make an overview

list of some image fusion based on the Siamese network in Table 3.

Figure 3. Siamese network-based infrared and visible image fusion scheme (credit to [44]).

Table 3. The overview of Siamese network-based fusion methods.

Ref. Limitation

The starting point of the article is target tracking. As far as the fusion effect is concerned, the fusion result is slightly
blurred.

It cannot be effectively combined with conventional fusion technology and is not suitable for complex data sets.

The thermal infrared network training uses visible images, and you can consider using thermal infrared images for
better results.

The CPU is used to train the model, so the computational efficiency of the model is not very prominent. It takes an
average of 19 s to process a pair of source images.

2.3. GAN-Based Fusion Methods

The existing deep learning-based image fusion technology usually relies on the CNN model, but in this case, the ground

truth needs to be provided for the model. However, in the fusion of infrared and visible images, it is unrealistic to define

fusion image standards. Therefore, without considering the ground truth, a deep model is learned to determine the degree

of blurring of each patch in the source image, and then the weight is calculated. Map accordingly to generate the final

fusion image . Using a generative countermeasure network to fuse infrared and visible images can be free from the

above problems.

In , Ma et al. proposed an image fusion method based on a generative confrontation network, where the generator is

mainly for the fusion of infrared images and visible images, and the purpose of the discriminator is to make the fused

image have more details in the visible image, which makes the fused image. The infrared heat radiation information and

visible texture information can be kept in the fusion image simultaneously. Figure 4 shows the image fusion framework

based on GAN. For fusion GAN, the source image’s vital information cannot be retained at the same time during the

image fusion process, and too much calculation space is occupied during the convolution process. In , learning group

convolution is used to improve the efficiency of the model and save computing resources. In this way, a better tradeoff can

be made between model accuracy and speed. Moreover, the remaining dense blocks are used as the fundamental

network construction unit. The inactive perceptual characteristics are used as the input content loss characteristics, which

achieves deep network supervision.

[35][36][37][38][58]

[47]

[45]

[44]

[46]

[47]

[44]

[33]

[48]



Figure 4. GAN-based infrared and visible image fusion framework.

In , Ma et al. make the fusion image similar to the infrared image by constrained sampling to avoid blurring radiation

information or loss of visible texture details. The dual discriminator does not need ground truth fusion images for pre-

training, which can fuse images of different resolutions without causing thermal radiation information blur or visible texture

detail loss. Considering the two challenges of CNN, relying only on adversarial training will result in the loss of detailed

information. Therefore, a minimax game is established between the generator and the discriminator in . The loss of the

model becomes the loss of detail, the loss of the target edge, and confrontation loss. In , Xu et al., based on local binary

pattern (LBP) , intuitively reflected the edge information of the image by comparing the values between the central pixel

and the surrounding eight pixels to generate a fusion image with richer boundary information. The discriminator encodes

and decodes the fused image and each source image, respectively, and measures the difference between the

distributions after decoding. In , Li et al. used the pre-fused image as the label strategy so that the generator takes the

pre-fused image as the benchmark in the generation process so that the image fused by the generator can effectively and

permanently retain the rich texture in the visible image and the thermal radiation information in the infrared image. We

make an overview list of some of the image fusion based on GAN in Table 4.

Table 4. The overview of some GAN-based fusion methods.

Ref. Limitation

Reduce the prominence of infrared thermal targets.

The pixel intensity of some fusion image areas is changed, and the
overall brightness is reduced.

Some edges of the fused image are a bit blurry.

Unique fusion results have bright artifacts.

In the early stage of model training, it takes some time to label the
pre-fused images.

 

2.4. Autoencoder-Based Fusion Methods

In the paper , Prabhakaret et al. studied the fusion problem based on CNN. They proposed a simple CNN-based

architecture, including two encoding network layers and three decoding network layers. Although this method has good

performance, there are still two main shortcomings: (1) The network architecture is too simple, and it may not be able to

extract the salient features of the source image correctly; (2) These methods only use the last layer of the encoding

network to calculate; as a result, the useful information obtained by the middle layer will be lost. This phenomenon will

become sparser when the network is deeper. In the traditional CNN network, as the depth increases, the fusion ability of

the model is degraded . For this problem, Heet et al.  introduced a deep residual learning framework to improve the

layers’ information flow further. Huang et al.  proposed new architecture with dense blocks in which each layer can be
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directly connected to any subsequent layer. The main advantages of the dense block architecture: (1) the architecture can

retain as much information as possible; (2) the model can improve the information flow and gradient through the network,

and the network is easy to train; (3) this dense connection method has a regularization effect, which can reduce overfitting

caused by too many parameters . 

In , Li et al. combine the encoding network with the convolutional layer, fusion layer, and dense block, and the output of

each layer is connected. The figure shows the working principle of the Autoencoder model in the fusion image. The model

first obtains the feature map through CNN and dense block and then fuses the feature through the fusion strategy. After

the fusion layer, the feature map is integrated into a feature map containing the significant features of the source image.

Finally, the fused image is reconstructed by a decoder. The fusion mechanism of the autoencoder is shown in Figure 5.

In , Ma et al. considering the existing methods to solve the difference between output and target by designing loss

function. These indicators will introduce new problems. It is necessary to design an adaptive loss function to avoid the

ambiguity of the results. Most human-designed fusion rules lead to the extraction of the same features for different types

of source images, making this method unsuitable for multi-source image fusion. In this paper, a double discriminator is

used to pre-train the fused images. An Autoencoder is used to fuse the images with different resolutions to retain the

maximum or approximately the maximum amount of information in the source images. In , Sun et al. used the RGB-

thermal fusion network (RTFNet). RTFNet consists of three modules: RGB encoder and infrared encoder for extracting

features from RGB images and Thermal images, respectively, and decoder to restore the resolution of feature images.

Where the encoder and decoder are designed regionally symmetric, RTFNet is used for feature extraction, where the new

encoder can restore the resolution of the approximate feature map. As this method is mainly used for scene

segmentation, the edge of scene segmentation is not sharp.

Figure 5. Autoencoder based infrared and visible image fusion framework (credit to ).
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